Inhalt

I. Einführung in die Laplace-Transformation	11
A. Die allgemeinen mathematischen Grundlagen	1:
1. Einführung und Vorbemerkungen	1:
2. Die Funktionalanalysis und die Laplace-Transformation	11
3. Das Laplace-Integral und seine Konvergenzeigenschaften	13
4. Die Berechnung des Laplace-Integrals	14
B. Die Abbildungseigenschaften der 2-Transformation	18
1. Die lineare Substitution im Originalbereich	15
2. Anwendungen der sog. Verschiebungsregel und des Ähnlichkeits-	17
satzes	18
4. Die Abbildung der Integration im Originalbereich	19
5. Die Integration im Resultathereich	28
6. Die Abbildung der Ableitung im Originalbereich	24
7. Die Ableitung im Resultatbereich	27
8. Anwendungen des sog. Multiplikationssatzes	27
9. Anhang zu B.: Einführung in die Eigenschaften der I'-Funktion	
a) Die Gammafunktion als Parameterintegral	28
b) Einige Hauptsätze der Gammafunktion	30
C. Die Faltung	32
1. Der Begriff der Faltung	32
2. Der Additionssatz	33
3. Der Faltungssatz	34
4. Anwendungen des Faltungssatzes	3€
D. Integralgleichungen	37
1. Einleitung und Grundbegriffe	37
2. Lösungsbedingungen für Integralgleichungen vom Faltungstyp .	38
3. Die Abelsche Integralgleichung	39
4. Anhang 1 zu D.: Die klassische Lösung der Abelschen Gleichung	42
5. Anhang 2 zu D.: Ein Hilfssatz der 2-Transformation über die Auf-	
teilung der Resultatfunktion in Produkte	44
a) Zweck des Aufteilungssatzes	44
b) Der Aufteilungssatz	45
II. Lösung von Differentialgleichungen mit der Laplace-Transformation	46
A. Gewöhnliche lineare Differentialgleichungen mit konstanten Koeffi-	46
zienten	
1. Grundbegriffe und Lösungsweg	46
2. Die gewöhnliche Differentialgleichung 1. Ordnung mit Störungsfunktion	47

		Seite
	3. Anwendungen der Differentialgleichungen 1. Ordnung mit Störungsfunktion	49
	4. Die Lösung gewöhnlicher Differentialgleichungen 2. Ordnung mit Störungsfunktion	52
	5 Anwendung der Differentialgleichung 2. Ordnung	55
	6 Die gewöhnliche Differentialgleichung nter Ordnung mit kon-	
	stanten Koeffizienten	64
	7. Anhang zu 6.: Zusammenfassung der Eigenschaften der ganzen	68
	rationalen Funktionen und ihrer Nullstellen	00
	8. Ein System linearer Differentialgleichungen mit konstanten Koeffizienten und Störungsfunktion	71
	9 Anhang 4 zu 8 · Die Partialbruchzerlegung, ein Rechenhilfsmittel	
	für die Laplace-Transformation	74
	40 Anhang 2 zu 8.: Das Cauchysche Integral und die Integration im	
	Komplexen	77
	a) Cauchys Integralsatz und die Integralberechnung	77
	b) Reihenentwicklung im Komplexen	77 79
	c) Das Residuum und der Residuensatz	79
	Komplexen	79
	11. Anhang 3 zu 8.: Hauptregeln und Erklärungen aus der Lehre der	
	Determinanten	81
В.	Die Besselschen Funktionen in der Theorie der Laplace-Transformation	
	4 Die Resselsche Differentialgleichung	84
	2. Anhang zu 1.: Wichtige Formeln der elementaren Bessel-Funktionen	91
C.	Die Anwendung der Laplace-Transformation auf die partiellen Differentialgleichungen mit konstanten Koeffizienten	93
	1. Einleitung und Vorbemerkungen	93
	a Dandwontproblem	93
	2 Der allgemeine Lösungsweg einer partiellen Differentialgleichung	
	2. Ordnung mit konstanten Koeffizienten	95
ъ	Einige Typen partieller Differentialgleichungen mit konstanten Koeffi-	
IJ.	zienten	98
	1. Die partielle Differentialgleichung $U_{xx}-U_{t}=-\boldsymbol{\varPhi}\left(x,t ight)$	98
	a) Das Problem und die Transformation in den Resultatbereich.	98
	b) Die Eigenschaften der gewöhnlichen Differentialgleichung	
	d^2u .	100
	$rac{d^2 u}{d x^2} + \mu \cdot u = \psi \left(x ight) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	100
	c) Rechenhilfen zur Rücktransformation	102
	x) Allgemeine Integralgleichungen vom Faltungstypus	102
	β) Einige Hilfsformeln aus der Theorie der Thetafunktion	105
	d) Die Rücktransformation der Differentialgleichung aus dem Resul- tat- in den Originalbereich	108
	2. Die Schwingungsgleichung als Beispiel einer hyperbolischen	
	Differentialgleichung	112
	a) Allgamaines	112
	b) Die homogene Gleichung unter gegebenen Randbedingungen .	. 113
	c) Die reine Wellen- oder Schwingungsgleichung $U_{xx} = A \cdot U_{tt}$. 115

В.

C.

	Seite
d) Der physikalische Sinn der Lösungsfunktion für die Wellen- gleichung	116
3. Anhang zu D.: Die verallgemeinerte Schwingungsgleichung und die	
Greensche Funktion	118
III. Das Umkehrproblem der Laplace-Integrale	122
1. Die Umkehrung der L-Transformation	
2. Die Entwicklung der Resultatfunktion in Partialbrüche	124
Formelzusammenstellung für die Laplace-Transformation	129
Laplace-Integrallexikon	132
$Sehrifttum \dots \dots$	140
Sachverzeichnis und Sachlevikon	1.4.1