Contents

0. P	reface			•						
Cha	pter 1. l	Preliminary Results								
1.0	Introd	uction								
1.1	Basic 1	Results from Set Theo:	ry							
1.2	Varioi	is Classes of Functions	S .							
	1.2.1	Semicontinuous funct	ions							
	122	The classes C^n and A								
1.3	Conve	x Functions .								. 1
1.4	Integr	ation Theory and Gree	en's T	heoren	n					. 1
	1.4.1	x Functions ation Theory and Gree The Lebesgue integra Surface integrals. Domains and their free	1.							. 1
	1.4.2	Surface integrals.								. 1
	1.4.3	Domains and their fre	ontier	surfac	es					. 2
	1.4.4	Green's theorem. onic Functions								. 2
1.5	Harmo	onic Functions .								. 2
	1.5.1	Green's function and	Poiss	on's in	tegral					. 2
	1.5.2	The maximum princip	ole for	harm	onic f	unctic	ns			. 2
	1.5.3	Analyticity .								. 3
	1.5.4	The problem of Diric	hlet fo	r a hv	perba	ll				. 3
	1.5.5	The mean-value prop	ertv							. 3
	1.5.6	Harnack's inequality	and H	arnac	k's the	orem				. 3
	1.5.7	Conclusion .						•	•	. 3
			•		•	•		•	•	. 5
Cha	_	Subharmonic Functions								
2.0	Introd	uction . tion and Simple Exam								. 4
2.1	Defini	tion and Simple Exam	ples							. 4
2.2	Jensen	's Inequality .								. 4
2.3	Some	Further Classes of Sub	harm	onic F	unctio	ons				. 4
2.4	The M	aximum Principle								. 4
2.5	Sh Fi	unctions and the Poiss	on In	tegral				•		. 4
2.6	Perron	's Method and the Pro	hlem	of Dir	richlet	•	•	•		. 5
	261	Harmonicity .								. 5
		Boundary behaviour	•	•	•	•	•	•	•	
		Conditions for regular								
2.7		-				on or	the ba	illici i	unctio	. 6
4.1	2.7.1	Some applications	•	•		•	•	•	•	. 6
	2.7.1	Harmonic extensions				•	•	•	•	
2.8		dination	•	•	•	•	•	•	•	. 70
4.0	SUUUI	imation		•						. "

xvi Contents

Chaj	itel 5. Representation Theorems										
3.0	Introduction						8				
3.1	Introduction						8				
3.2	Linear Functionals				Ī	Ċ	8				
3.3	Construction of Lebesgue Measure and Integrals: (F. Riesz's Theorem)										
3.4	Repeated Integrals and Fubini's Theorem						9				
	3.4.1 Convolution transforms	-					9				
3.5	3.4.1 Convolution transforms Statement and Proof of Riesz's Representation	Theo	rem	•	•	•	10				
	3.5.4 Proof of Riesz's Theorem					•	11				
3.6	3.5.4 Proof of Riesz's Theorem	•	•	•	•	•	114				
3.7	The Green's Function and the Poisson-Jensen	Form	1110			:	119				
3.8	Harmonic Extensions and Least Harmonic Ma Nevanlinna Theory Bounded Subharmonic Functions in R^m .	iorant	S	•	•	•	12				
3.9	Nevanlinna Theory			•	·	:	12:				
3.10	Bounded Subharmonic Functions in R^m .			Ī	i.		12				
		•	-	•	•	•					
Cha	pter 4. Functions Subharmonic in Space										
	<u>-</u>										
4.0	Introduction The Weierstrass Representation Theorem Hadamard's Penrocentation Theorem	•		•		•	13				
4.1	The Weierstrass Representation Theorem	•					13				
4.2	Hadamard's Representation Theorem .						14				
4.3	Hadamard's Representation Theorem . Relations Between $T(r)$ and $B(r)$.						14				
	4.3.1 Two examples		_		_		14				
4.4	Relations Between $N(r)$ and $T(r)$.						15				
4.5	Functions of Order Less Than One.						15				
	4.5.1 A sharp inequality connecting $N(r)$ and	B(r)		•	•		15				
	Relations Between $N(r)$ and $T(r)$. Functions of Order Less Than One. 4.5.1 A sharp inequality connecting $N(r)$ and 4.5.3 The sharp bound for $\delta(u)$; statement of	results		•	•	•	16				
	4.5.4 Proof of theorem 4.9	1 Court	3	•	•	•	16				
	4.5.5 Proof of theorem 4.10	•	•	•	•	•	169				
4.6	4.5.5 Proof of theorem 4.10	•	•	•	•	•					
₹.0	4.6.1 Declining and acceptances	•	•	•	•	٠	170				
	4.6.1 Preliminary results .	•	•	•	•	•	17				
	4.6.1 Preliminary results 4.6.3 Components $C(K)$ in domains 4.6.4 Tracts and growth	•		•	•	٠	170				
	4.6.4 Tracts and growth						18				
	4.6.5 Iversen's Theorem						18:				
	4.6.5 Iversen's Theorem 4.6.6 Construction of an asymptotic path 4.6.7 Growth on asymptotic paths						18′				
	4.6.7 Growth on asymptotic paths .						192				
	4.6.8 Three examples						190				
Cha	oter 5. Capacity and Null Sets										
5.0	Introduction						20				
5.1	Potentials and a-capacity	•	•	•	•	•	20				
0.1	5 1 1 Weak convergence	•	•	•	•	•	20				
5.2	Introduction Potentials and α-capacity 5.1.1 Weak convergence Conductor Potentials and Capacity. 5.2.1 The nature of the conductor potential Polar Sets	•	•	•	•	•	20:				
J.2	5.2.1. The nature of the conductor material	•	•	•	•	٠	203 21				
5.3	Polar Sets	•	•	•	•	•	21				
5.4	Polar Sets	•	•	•	•	•	219				
J. 4	5.4.1 The main communicate there is	•	•	•	•	•	220				
	5.4.1 The main comparison theorems .	•	•	٠	•	•	22:				
	-) 4 / All application to bounded regular fund	tions					77				

					·	UNIE	N12						VAII
5.5	The E	xtended	Maxim	um or	Phrag	gmén-	-Linde	elöf P	rincipl	e .			232
			eness of										235
		-	ets as n			-							237
5.6	Polar	Sets and	the Pro	blem	of Dir	ichlet							239
5.7	Gener	alized I	Iarmoni	c Exte	nsions	and	Greer	i's Fu	nction				246
	5.7.1	Harmo	onic exte	nsions									247
	5.7.2	The ge	neralize	d Gree	n's fu	nctio	ı.						249
	5.7.3	The sy	mmetry	proper	rty of	the G	reen's	s func	tion				255
	5.7.4	The ex	tended	Green'	s func	tion a	ınd th	e Poi	sson–J	Jenser	ı form	ula	256
5.8	Capac	itability	and Sti	ong Su	ıbadd	itivity	٠.						258
	5.8.1	Strong	subadd	itivity									259
	5.8.2	Outer	capaciti	es .					•				263
			itability										269
5.9	Sets w	here s.h	. Funct	ions Be	ecome	Infin	ite		٠	•	•	•	273
Refe	rences			•									277
Inda	•												282

Index .