CONTENTS

Chapter I.	Classical potential theory	:
§1. Har	emonic functions	-
1.1.	The class $H(U)$ of harmonic functions	-
1.2.	Harmonic distributions	3
1.3.	The Poisson kernel	L
§2. Hyper-, super-, nearly super-harmonic functions		
2.1.	Hyperharmonic functions	6
2.2.	The class $S(U)$ of superharmonic functions	8
2.3.	Superharmonic distributions and Newton potentials	11
2.4.	The class $N(U)$ of nearly superharmonic functions	13
§3. Swe fun	eping-out theory, polar sets and quasisuperharmonic ctions	17
3.1.	Sweeping-out	17
3.2.	Choquet capacities related to the sweeping-out process	19
3.3.	Polar sets	23
3.4.	The class $Q(U)$ of quasisuperharmonic functions	26
References for Chapter I		30
Chapter II.	Plurisuperharmonicity and separate analyticity with respect to a finite number of variables	31
§1. Plum	rihyperharmonic and separately hyperharmonic functions	31
1.1.	Separately hyperharmonic functions	31
1.2.	Plurihyperharmonic and plurisuperharmonic functions	35
1.3.	The class $\mbox{NP}(\Omega)$ of nearly plurisuperharmonic functions	37
§2. Sepa	arate analyticity	41
2.1.	Hartogs' theorems for the complex case	41

2.2. Siciak's theorem for the real case	44	
2.3. The real case: proofs of Propositions 1 and 2 state in the preceding section	:ea 48	
2.4. Lelong's theorem for the harmonic case	53	
References for Chapter II	54	
Chapter III. Complex analysis in infinite dimensional vector spaces	56	
§1. Analytic maps in the sense of Gâteaux	56	
1.1. Topological vector spaces	56	
1.2. Analytic maps defined on finite dimensional open	sets 58	
1.3. The class $G(\Omega,Y)$ of Gâteaux-analytic maps	65	
1.4. Plurihyperharmonic functions	71	
§2. Analytic maps in the sense of Fréchet	73	
 Some criteria for the continuity of a Gâteaux- analytic map 	73	
2.2. The class $A(\Omega,Y)$ of analytic maps	76	
2.3. A deeper investigation of $A(X,\mathbb{C})$	82	
2.4. The class $P(\Omega)$ of plurisuperharmonic functions	87	
References for Chapter III		