TABLE OF CONTENTS | Р | reface | lX | |----|--|----------------------------| | | Chapter 1 CHE ABSTRACT CAUCHY PROBLEM | | | 1. | WELL-POSEDNESS OF THE DIFFERENTIAL CAUCHY PROBLEM IN $C(E)$ | 1 | | | | 1
4
5
7 | | 2. | WELL-POSEDNESS OF THE CAUCHY PROBLEM IN $C_0^{\alpha}(E)$ | 14 | | | F100101111 F110 0P400 0 (-) | 14
16 | | 3. | WELL-POSEDNESS OF THE CAUCHY PROBLEM IN $L_p(E)$ | 21 | | | A formula for the solution of the Cauchy problem in L_p(E) Spaces of initial data The values of the solution of the Cauchy problem in L_p(E) for fixed t The coercivity inequality for the solutions in L_p(E) of the general problem (1.1) | 21
23
24
26
28 | | 4. | WELL-POSEDNESS OF THE CAUCHY PROBLEM IN $L_p(E_{\alpha,q})$ | 36 | | 5. | | 43 | | | 2. Well-posedness of the general problem | 43
48
53
58 | | Chapter 2 THE ROTHE DIFFERENCE SCHEME | | |---|--------------------------| | 0. STABILITY OF THE DIFFERENCE PROBLEM | 71 | | The difference problem Banach spaces of grid functions The operator equation in \$\mathcal{E}(E)\$. Definition of the stability of the difference scheme Stability of the difference scheme | 7:
7:
7:
7: | | 1. WELL-POSEDNESS OF THE DIFFERENCE PROBLEM IN $\mathcal{C}(E)$ | 81 | | The homogeneous difference problem The nonhomogeneous problem. A real-field criterion for analyticity An almost coercive inequality in C(E) | 81
81
86 | | 2. WELL-POSEDNESS OF THE DIFFERENCE PROBLEM IN $\mathcal{C}_0^{\alpha}(E)$ | 90 | | 3. WELL-POSEDNESS OF THE DIFFERENCE PROBLEM IN $\mathcal{L}_p(E)$ | 97 | | Definition of the well-posedness of the difference problem in \(\mathcal{L}_p(E)\). Spaces of initial data The coercivity inequality for the solutions in \(\mathcal{L}_p(E)\) of the general problem (0.6) | 97
98
104 | | 4. WELL-POSEDNESS OF THE DIFFERENCE PROBLEM IN $\mathcal{L}_p(E_{\alpha,q})$ | 116 | | 1. Strongly positive operators and fractional spaces | 116
123 | | 5. WELL-POSEDNESS OF THE DIFFERENCE PROBLEM IN DIFFERENCE ANALOGUES OF SPACES OF SMOOTH FUNCTIONS | 130 | | The space C₀^{β,γ}(E). The nonhomogeneous difference problem Well-posedness of the general difference problem Estimates for powers of the resolvent The coercivity inequality for the general problem | 130
136
142
145 | | Chapter 3
PADÉ DIFFERENCE SCHEMES | | | 0. STABILITY OF THE DIFFERENCE PROBLEM | 157 | | Padé approximants of the function e^{-z} Difference schemes of Padé class | 157
169 | | 1. WELL-POSEDNESS OF THE DIFFERENCE PROBLEM IN $\mathcal{C}(E)$ | 175 | | The homogeneous problem The nonhomogeneous problem | 175
180 | | | Table of Contents | vii | |----|--|-----| | | 3. Sufficient conditions for almost-well-posedness. A real-field | | | | criterion for analyticity | 184 | | | 4. Estimates of powers of the operator step | 188 | | 2. | WELL-POSEDNESS OF THE DIFFERENCE PROBLEM | | | | IN $C_0^{\alpha}(E)$ | 192 | | | 1. The case of a general space $C_0^{\alpha}(E)$ | 192 | | | 2. The case of the special space $\tilde{\mathcal{C}}_0^{\alpha}(E)$ | 203 | | 3. | WELL-POSEDNESS OF THE DIFFERENCE PROBLEM | | | | IN $\mathcal{L}_p(E)$ | 208 | | | 1. Definition of the well-posedness of the difference problem | | | | in $\mathcal{L}_p(E)$. Stability of the difference problem | 208 | | | 2. Spaces of initial data. Well-posedness of the difference problem | 210 | | | 3. Estimates of powers of the operator step | 21. | | 4. | WELL-POSEDNESS OF THE DIFFERENCE PROBLEM | 22 | | | IN $\mathcal{L}_p(E'_{\alpha,q})$ | 22 | | | 1. Stability of the difference problem | 22 | | | 2. Well-posedness of the difference problem | 22 | | 5. | WELL-POSEDNESS OF THE DIFFERENCE PROBLEM | | | | IN DIFFERENCE ANALOGUES OF SPACES OF SMOOTH | 99 | | | FUNCTIONS | 22 | | | 1. Well-posedness of the difference problem in $C_0^{\beta,\gamma}(E)$ | 22 | | | 2. Estimates of powers of the operator step. The coercivity inequality for the general problem | 23 | | | mequanty for the general problem | 20 | | C | Chapter 4 | | | Ľ | DIFFERENCE SCHEMES FOR PARABOLIC EQUATIONS | | | 1 | . ELLIPTIC DIFFERENCE OPERATORS WITH CONSTANT | | | _ | COEFFICIENTS | 24 | | | 1. The definition of an elliptic difference operator and | | | | properties of its symbol | 24 | | | 2. A formula for the solution of the resolvent equation | 24 | | | 3. Point estimates for the fundamental solution of | ۰. | | | the resolvent equation | 25 | | | 4. Sharpening of the point estimates of the fundamental solution | 25 | | | of the resolvent equation | ∠.و | | | constant coefficients | 26 | | | 6. Point estimates of the fundamental solution of the resolvent | | equation in the case $m \leq n$ solution of the resolvent equation 7. Point estimates of difference derivatives of the fundamental 269 273 | 2. FRACTIONAL SPACES IN THE CASE OF AN ELLIPTIC | | |---|-----| | DIFFERENCE OPERATOR | 283 | | 1. The fractional spaces $E'_{\alpha,\infty}(C_h,A_h)$ | 283 | | 2. Positivity of the elliptic difference operator in L_{1h} . | | | The fractional spaces $E'_{\alpha,1}(L_{1h}, A_h)$ | 295 | | The fractional spaces $E'_{\alpha,p}(L_{ph},A_h)$ | 304 | | 4. The coercivity inequality for an elliptic difference operator in | | | $C^{m\alpha}(\mathbf{R}_h^n)$ and $W_p^{m\alpha}(\mathbf{R}_h^n)$ | 318 | | 5. Elliptic difference operators in \mathcal{L}_{2h} | 320 | | 3. STABILITY AND COERCIVITY ESTIMATES | 322 | | I. Approximation with respect to the space variables | 322 | | II. Approximation with respect to the time variable | 323 | | Comments on the Literature | 327 | | References | 225 |