CONTENTS

Foreword from the Porter Lectures Committee	ix
Preface	xi
Introduction	3
1. From Differentiable to Abstract Dynamics	3 4
2. What is a Dynamical System?	4
3. Some Nonclassical Dynamical Systems	6
4. The Classical Recurrence Theorems	8
5. Multiple Birkhoff Recurrence and van der Waerden's Theorem	9
6. Variations on van der Waerden's Theorem	10
7. Dynamical Reformulation	13
8. Note on Terminology	15
PART I. RECURRENCE IN DYNAMICAL SYSTEMS	
CHAPTER 1 Recurrence and Uniform Recurrence in	
Compact Spaces	19
1. Dynamical Systems and Recurrent Points	19
2. Automorphisms and Homomorphisms of Dynamical Systems,	
Factors, and Extensions	20
3. Recurrent Points for Bebutov Systems	24
4. Uniform Recurrence and Minimal Systems	27
5. Substitution Minimal Sets and Uniform Recurrence in	
Bebutov Systems	31
6. Combinatorial Applications	34
7. More Diophantine Approximation	35
8. Nonwandering Transformations and Recurrence	38
CHAPTER 2 Van der Waerden's Theorem	40
1. Bowen's Lemma and Homogeneous Sets	41
2. The Multiple Birkhoff Recurrence Theorem	44
3. The Multidimensional van der Waerden Theorem	46
4. Reformulations and Applications: Diophantine Inequalities	47
5. Further Refinements: IP-Sets	51

PART II. RECURRENCE IN MEASURE PRESERVING SYSTEMS

CHAPTER 3 Invariant Measures on Compact Spaces	59
1. Measure Preserving Systems and Poincaré Recurrence	59
2. Invariant Measures on Compact Spaces	61
3. Group Extensions, Unique Ergodicity, and Equidistribution	66
4. Applications to Unitary Operators	69
5. Invariant Measures for Symbolic Flows	72
6. Density and Upper Density	76
7. Szemerédi's Theorem	76
8. Poincaré Sequences and Recurrence	77
CHAPTER 4 Some Special Ergodic Theorems	79
1. Weakly Mixing Transformations	79
2. Multiple Recurrence for Weakly Mixing Transformations	83
3. Generic Measures and a Mean Ergodic Theorem	88
4. Roth's Theorem	90
5. More on Generic Measures	95
6. Weak Mixing and Eigenfunctions	96
CHAPTER 5 Measure Theoretic Preliminaries	98
1. Factors of Measure Spaces and Measure Preserving Systems	98
2. Regular Measure Spaces	103
3. Conditional Expectation	104
4. Disintegration of Measures	107
5. Relative Products of Measure Spaces	110
6. Regular Homomorphisms	115
CHAPTER 6 Structure of Measure Preserving Systems	117
1. Ergodic and Weak Mixing Extensions	
2. Some Examples of Compactness	119 122
3. Characterizing Compact Extensions	122
4. Existence of Compact Extensions	136
5. Primitive Extensions and the Structure Theorem	138
CHAPTER 7 The Multiple Recurrence Theorem	140
1. Limits of SZ-Systems	_
2. Weak Mixing Extensions	140 142
3. Primitive Extensions	142
4. The Multiple Recurrence Theorem	
maniple recuirence theorem	150

CONTENTS vii

PART III. DYNAMICS AND LARGE SETS OF INTEGERS

Chapter 8 Proximality in Dynamical Systems and the	
Theorems of Hindman and Rado	157
1. Proximality	157
2. The Enveloping Semigroup and Idempotents	158
3. Central Sets and Hindman's Theorem	161
4. IP-Systems	163
5. IP-Systems of Transformations and Birkhoff Recurrence	166
6. A Basic Property of Central Sets	169
7. Rado's Theorem	172
CHAPTER 9 The Fine Structure of Recurrence and Mixing	175
1. Dual Families of Sets in Z	176
2. S-Convergence and S-Recurrence	179
3. Algebras of Recurrent Functions on Z	186
4. Mild Mixing	189
5. Mild Mixing of All Orders	192
Bibliography	195
Index	201