TABLE OF CONTENTS

Preface	xiii
Chapter 1. Some Equations of Classical Mechanics and Their Hamiltonian Properties	1
§1. Classical Equations of Motion of a Three-Dimensional	
Rigid Body	1
1.1. The Euler-Poisson Equations Describing the Motion	
of a Heavy Rigid Body around a Fixed Point	1
1.2. Integrable Euler, Lagrange, and Kovalevskaya Cases	6
1.3. General Equations of Motion of a Three-Dimensional	
Rigid Body	10
§2. Symplectic Manifolds	12
2.1. Symplectic Structure in a Tangent Space to a Manifold	12
2.2. Symplectic Structure on a Manifold	17
2.3. Hamiltonian and Locally Hamiltonian Vector Fields	
and the Poisson Bracket	20
2.4. Integrals of Hamiltonian Fields	30
2.5. The Liouville Theorem	32
§3. Hamiltonian Properties of the Equations of Motion of a	
Three-Dimensional Rigid Body	34
§4. Some Information on Lie Groups and Lie Algebras Necessary	
for Hamiltonian Geometry	39
4.1. Adjoint and Coadjoint Representations, Semisimplicity,	
the System of Roots and Simple Roots, Orbits, and the	
Canonical Symplectic Structure	39
4.2. Model Example: $SL(n, \mathbb{C})$ and $sl(n, \mathbb{C})$	44
4.3. Real, Compact, and Normal Subalgebras	46
Chapter 2. The Theory of Surgery on Completely Integrable Hamiltonian Systems of Differential	
Equations	55
§1. Classification of Constant-Energy Surfaces of Integrable Systems. Estimation of the Amount of Stable Periodic Solutions on a Constant-Energy Surface. Obstacles in the	
Way of Smooth Integrability of Hamiltonian Systems	55
1.1. Formulation of the Results in Four Dimensions	55 55

	1.2.	A Short List of the Basic Data from the Classical	
		Morse Theory	68
	1.3.	Topological Surgery on Liouville Tori of an Integrable	
		Hamiltonian System upon Varying Values of a	
		Second Integral	70
	14.	Separatrix Diagrams Cut out Nontrivial Cycles on	
		Nonsingular Liouville Tori	73
	1.5	The Topology of Hamiltonian-Level Surfaces of an	
	1.0.	Integrable System and of the Corresponding One-	
		Dimensional Graphs	78
	16	Proof of the Principal Classification Theorem 2.1.2	91
		Proof of Claim 2.1.1	91
		Proof of Theorem 2.1.1. Lower Estimates on the	71
	1.0.		92
		Number of Stable Periodic Solutions of a System	97
		Proof of Corollary 2.1.5	91
	1.10	Topological Obstacles for Smooth Integrability and	
		Graphlike Manifolds. Not each Three-Dimensional Manifold	
		Can be Realized as a Constant-Energy Manifold of an	00
		Integrable System	98
1	l.11.	Proof of Claim 2.1.4	99
§2.	Mul	tidimensional Integrable Systems. Classification of the	
•		gery on Liouville Tori in the Neighbourhood of	
		rcation Diagrams	103
		Bifurcation Diagram of the Momentum Mapping	
		for an Integrable System. The Surgery of General Position	103
	22	The Classification Theorem for Liouville Torus Surgery	109
		Toric Handles. A Separatrix Diagram is Always Glued	
	2.0.	to a Nonsingular Liouville Torus T^n	
		Along a Nontrivial $(n-1)$ -Dimensional Cycle T^{n-1}	111
	0.4	Any Composition of Elementary Bifurcations (of Three	
	4.4.	Types) of Liouville Tori Is Realized for a Certain Integrable	
		Types) of Liouville for is Realized for a Certain integrable	116
		System on an Appropriate Symplectic Manifold	110
	2.5.	Classification of Nonintegrable Critical Submanifolds	123
		of Bott Integrals	123
§3.	The	Properties of Decomposition of Constant-Energy Surfaces	
	of I	ntegrable Systems into the Sum of Simplest Manifolds	126
		A Fundamental Decomposition $Q = mI + pII + qIII$	
		+sIV +rV and the Structure of Singular Fibres	126
	3.2.	Homological Properties of Constant-Energy Surfaces	129
		-	
		er 3. Some General Principles of Integration of	149
Ha	milt	onian Systems of Differential Equations	143
§1.	No	ncommutative Integration Method	143
-	1.1.	Maximal Linear Commutative Subalgebras in the Algebra	
		of Functions on Symplectic Manifolds	143
	1.2	A Hamiltonian System Is Integrable if Its Hamiltonian	
		is Included in a Sufficiently Large Lie Algebra of Functions	146

	Table of Contents	ix
	1.3. Proof of the Theorem	149
§2.	The General Properties of Invariant Submanifolds of	
•	Hamiltonian Systems	157
	2.1. Reduction of a System on One Isolated Level Surface	157
	2.2. Further Generalizations of the Noncommutative	
	Integration Method	160
§3.	Systems Completely Integrable in the Noncommutative	
•	Sense Are Often Completely Liouville-Integrable in the	
	Conventional Sense	165
	3.1. The Formulation of the General Equivalence Hypothesis	
	and its Validity for Compact Manifolds	165
	3.2. The Properties of Momentum Mapping of a System	
	Integrable in the Noncommutative Sense	167
	3.3. Theorem on the Existence of Maximal Linear	
	Commutative Algebras of Functions on Orbits in Semisimple	
	and Reductive Lie Algebras	171
	3.4. Proof of the Hypothesis for the Case of Compact Manifolds	173
	3.5. Momentum Mapping of Systems Integrable in the	
	Noncommutative Sense by Means of an Excessive Set	450
	of Integrals	173
	3.6. Sufficient Conditions for Compactness of the Lie Algebra	170
	of Integrals of a Hamiltonian System	176
§4 .	Liouville Integrability on Complex Symplectic Manifolds	178
	4.1. Different Notions of Complex Integrability and Their	
	Interrelation	178
	4.2. Integrability on Complex Tori	181
	4.3. Integrability on K3-Type Surfaces	182
	4.4. Integrability on Beauville Manifolds	184
	4.5. Symplectic Structures Integrated without Degeneracies	186
Cha	apter 4. Integration of Concrete Hamiltonian Systems	
in (Geometry and Mechanics. Methods and Applications	187
§1.	Lie Algebras and Mechanics	187
٠	1.1. Embeddings of Dynamic Systems into Lie Algebras	187
	1.2. List of the Discovered Maximal Linear Commutative	
	Algebras of Polynomials on the Orbits of Coadjoint	
	Representations of Lie Groups	189
82.	Integrable Multidimensional Analogues of Mechanical Systems	
3	Whose Quadratic Hamiltonians are Contained in the Discovered	
	Maximal Linear Commutative Algebras of Polynomials	
	on Orbits of Lie Algebras	207
	2.1. The Description of Integrable Quadratic Hamiltonians	207
	2.2. Cases of Complete Integrability of Equations of Various	
	Motions of a Rigid Body	210
	2.3. Geometric Properties of Rigid-Body Invariant Metrics	
	on Homogeneous Spaces	216

§3.	Euler Equations on the Lie Algebra so(4)	220
§ 4 .	Duplication of Integrable Analogues of the Euler Equations by Means of Associative Algebra with Poincaré Duality	231
	4.1. Algorithm for Constructing Integrable Lie Algebras	231
	4.2. Frobenius Algebras and Extensions of Lie Algebras	236
	4.3. Maximal Linear Commutative Algebras of Functions	
	on Contractions of Lie Algebras	243
85.	The Orbit Method in Hamiltonian Mechanics and Spin	
3 0.	Dynamics of Superfluid Helium-3	250
Ch	apter 5. Nonintegrability of Certain Classical	
	miltonian Systems	256
81.	The Proof of Nonintegrability by the Poincaré Method	256
2	1.1. Perturbation Theory and the Study of Systems Close	
	to Integrable	256
	1.2. Nonintegrability of the Equations of Motion of a	
	Dynamically Nonsymmetric Rigid Body with a Fixed Point	260
	1.3. Separatrix Splitting	261
	1.4. Nonintegrability in the General Case of the Kirchhoff Equations of Motion of a Rigid Body in an Ideal Liquid	266
§2.	Topological Obstacles for Complete Integrability	267
•	2.1. Nonintegrability of the Equations of Motion of Natural	
	Mechanical Systems with Two Degrees of Freedom on	0.07
	High-Genus Surfaces	267
	2.2. Nonintegrability of Geodesic Flows on High-Genus	272
	Riemann Surfaces with Convex Boundary	212
	2.3. Nonintegrability of the Problem of n Gravitating	275
	Centres for $n > 2$	277
	2.4. Nonintegrability of Several Gyroscopic Systems	2
$\S 3$. Topological Obstacles for Analytic Integrability of Geodesic	001
	Flows on Non-Simply-Connected Manifolds	281
§4	. Integrability and Nonintegrability of Geodesic Flows on	
•	Two-Dimensional Surfaces, Spheres, and Tori	287
	4.1. The Holomorphic 1-Form of the Integral of a Geodesic	
	Flow Polynomial in Momenta and the Theorem on	
	Nonintegrability of Geodesic Flows on Compact Surfaces of Genus $g > 1$ in the Class of Functions Analytic in Momenta	287
	4.2. The Case of a Sphere and a Torus	291
	4.3. The Properties of Integrable Geodesic Flows on the	
	Sphere	294

Table of Contents	хi
Chapter 6. A New Topological Invariant of Hamiltonian Systems of Liouville-Integrable Differential Equations. An Invariant Portrait of Integrable Equations	
and Hamiltonians	300
§1. Construction of the Topological Invariant	300
§2. Calculation of Topological Invariants of Certain Classical Mechanical Systems	311
§3. Morse-Type Theory for Hamiltonian Systems Integrated by Means of Non-Bott Integrals	324
References	326
	320

341

Subject Index