Contents

Prefa	Preface		
Chap	ter 0 Basic Review	ı	
0.1	Preparation for Maple V Worksheets	1	
0.2	Preparation for Linear Algebra	4	
0.3	Preparation for Ordinary Differential Equations	7	
0.4	Preparation for Partial Differential Equations	ç	
Chap	ter I Ordinary Linear Differential Equations	Н	
1.1	Introduction	11	
1.2	First-Order Linear Differential Equations	12	
1.3	First-Order Initial Value Problem	17	
1.4	Second-Order Linear Differential Equations with Constant Coefficients	19	
1.5	Second-Order Linear Differential Equations with Variable Coefficients	24	
1.6	Finding a Second Basis Vector by the Method of Reduction of Order	27	
1.7	The Particular Solution by the Method of Variation of Parameters	31	
1.8	Initial Value Problem for Second-Order Differential Equations	38	
1.9	Frobenius Method of Series Solutions to Ordinary Differential Equations	41	
1.10	Series Sine and Cosine Solutions to the Euler Differential Equation	4 3	
1.11	Frobenius Series Solution to the Bessel Differential Equation	48	
	Chapter Summary	56	
	Exercises	58	
Chap	ter 2 Sturm–Liouville Eigenvalue Problems and Generalized Fourier Series	65	
2.1	Introduction	65	
2.2	The Regular Sturm-Liouville Eigenvalue Problem	65	
2.3	Green's Formula and the Statement of Orthonormality	67	
2.4	The Generalized Fourier Series Expansion	72	
2.5	Examples of Regular Sturm-Liouville Eigenvalue Problems	76	
	vii		

viii		Contents
2.6	Nonregular or Singular Sturm–Liouville Eigenvalue Problems	115
	Chapter Summary	130
	Exercises	131
		,
Chap	oter 3 The Diffusion or Heat Partial Differential Equation	143
3.1	Introduction	143
3.2	One-Dimensional Diffusion Operator in Rectangular Coordinates	143
3.3	Method of Separation of Variables for the Diffusion Equation	145
3.4	Sturm-Liouville Problem for the Diffusion Equation	146
3.5	Initial Conditions for the Diffusion Equation in Rectangular Coordinates	149
3.6	Example Diffusion Problems in Rectangular Coordinates	151
3.7	Verification of Solutions — Three-Step Verification Procedure	165
3.8	Diffusion Equation in the Cylindrical Coordinate System	169
3.9	Initial Conditions for the Diffusion Equation in Cylindrical Coordinates	173
3.10	Example Diffusion Problems in Cylindrical Coordinates	174
	Chapter Summary	182
	Exercises	183
Cha	pter 4 The Wave Partial Differential Equation	193
4.1	Introduction	193
4.2		193
4.3		195
4.4		197
4.5		200
4.6	Example Wave Equation Problems in Rectangular Coordinates	203
4.7	Wave Equation in the Cylindrical Coordinate System	217
4.8	Initial Conditions for the Wave Equation in Cylindrical Coordinates	222
4.9	Example Wave Equation Problems in Cylindrical Coordinates	224
	Chapter Summary	233
	Exercises	234
Chap	oter 5 The Laplace Partial Differential Equation	247
5.1	Introduction	247
5.2	Laplace Equation in the Rectangular Coordinate System	248
5.3	Sturm-Liouville Problem for the Laplace Equation in Rectangular Coordinate	
5.4	Example Laplace Problems in the Rectangular Coordinate System	255
5.5	Laplace Equation in Cylindrical Coordinates	268
٠.٠	Laplace Equation in Cylindrical Cooldinates	

Cont	Contents		
5.6	Sturm-Liouville Problem for the Laplace Equation in Cylindrical Coordinates	269	
5.7	Example Laplace Problems in the Cylindrical Coordinate System	274	
	Chapter Summary	289	
	Exercises	290	
Chap	oter 6 The Diffusion Equation in Two Spatial Dimensions	301	
6.1	Introduction	301	
6.2	Two-Dimensional Diffusion Operator in Rectangular Coordinates	301	
6.3	Method of Separation of Variables for the Diffusion Equation in Two Dimensions	303	
6.4	Sturm-Liouville Problem for the Diffusion Equation in Two Dimensions	304	
6.5	Initial Conditions for the Diffusion Equation in Rectangular Coordinates	308	
6.6	Example Diffusion Problems in Rectangular Coordinates	311	
6.7	Diffusion Equation in the Cylindrical Coordinate System	324	
6.8	Initial Conditions for the Diffusion Equation in Cyclindrical Coordinates	329	
6.9	Example Diffusion Problems in Cylindrical Coordinates	332	
	Chapter Summary	348	
	Exercises	350	
Cha	oter 7 The Wave Equation in Two Spatial Dimensions	361	
7.1	Introduction	361	
7.2	Two-Dimensional Wave Operator in Rectangular Coordinates	361	
7.3	Method of Separation of Variables for the Wave Equation	363	
7.4	Sturm-Liouville Problem for the Wave Equation in Two Dimensions	364	
7.5	Initial Conditions for the Wave Equation in Rectangular Cooordinates	369	
7.6	Example Wave Equation Problems in Rectangular Coordinates	371	
7.7	Wave Equation in the Cylindrical Coordinate System	384	
7.8	Initial Conditions for the Wave Equation in Cylindrical Coordinates	390	
7.9	Example Wave Equation Problems in Cylindrical Coordinates	393	
	Chapter Summary	408	
	Exercises	410	
Cha	pter 8 Nonhomogeneous Partial Differential Equations	419	
8.1	Introduction	419	
8.2	Nonhomogeneous Diffusion or Heat Equation	419	
8.3	Initial Condition Considerations for the Nonhomogeneous Heat Equation	428	
8.4	Example Nonhomogeneous Problems for the Diffusion Equation	430	

447

8.5 Nonhomogeneous Wave Equation

X		Contents
8.6	Initial Condition Considerations for the Nonhomogeneous Wave Equation	456
8.7	Example Nonhomogeneous Problems for the Wave Equation	458
	Chapter Summary	478
	Exercises	480
Chap	oter 9 Infinite and Semi-Infinite Spatial Domains	489
9.1	Introduction	489
9.2	Fourier Integral	489
9.3	Fourier Sine and Cosine Integrals	492
9.4	Nonhomogeneous Diffusion Equation over Infinite Domains	495
9.5	Convolution Integral Solution for the Diffusion Equation	498
9.6	Nonhomogeneous Diffusion Equation over Semi-Infinite Domains	500
9.7	Example Diffusion Problems over Infinite and Semi-Infinite Domains	503
9.8	Nonhomogeneous Wave Equation over Infinite Domains	514
9.9	Wave Equation over Semi-Infinite Domains	516
9.10	Example Wave Equation Problems over Infinite and Semi-Infinite Domains	520
9.11		530
9.12	1 1	535
	Chapter Summary Exercises	541 542
Cha	pter 10 Laplace Transform Methods for Partial Differential Equations	557
10.1	Introduction	557
10.2	Laplace Transform Operator	557
10.3	Inverse Transform and Convolution Integral	559
10.4	Laplace Transform Procedures on the Diffusion Equation	560
10.5	Example Laplace Transform Problems for the Diffusion Equation	564
10.6	Laplace Transform Procedures on the Wave Equation	582
10.7		586
	Chapter Summary	606
	Exercises	608
Selec	ted References on Partial Differential Equations	621
Selected References on Maple V		623
Index		625

- 以中心