CONTENTS

1	The Mathematical Foundation of Domain Decom-	
	position Methods	1
1.1	Multi-domain formulation and the Steklov-Poincaré inter-	
	face equation	2
1.2	Variational formulation of the multi-domain problem	5
1.3	Iterative substructuring methods based on transmission	
	conditions at the interface	10
1.4	Generalisations	18
	1.4.1 The Steklov-Poincaré equation for the Neumann	
	boundary value problem	22
	1.4.2 Iterations on many subdomains	24
1.5	The Schwarz method for overlapping subdomains	26
	1.5.1 The multiplicative and additive forms of the Sch-	
	warz method	26
	1.5.2 Variational interpretation of the Schwarz method	28
	1.5.3 The Schwarz method as a projection method	29
	1.5.4 The Schwarz method as a Richardson method	31
	1.5.5 A characterisation of the projection operators	32
	1.5.6 The Schwarz method for many subdomains	33
1.6	The fictitious domain method	34
1.7	The three-field method	38
2	Discretised Equations and Domain Decomposition	
	Methods	41
2.1	Finite element approximation of elliptic equations	41
	2.1.1 The multi-domain formulation for finite elements	43
	2.1.2 Algebraic formulation of the discrete problem	45
2.2	Finite element approximation of the Steklov-Poincaré op-	
	erator	46
	2.2.1 Eigenvalue analysis for the finite element Steklov-	
	Poincaré operator	48
2.3	Algebraic formulation of the discrete Steklov-Poincaré op-	
	erator: the Schur complement matrix	49
	2.3.1 Preconditioners of the stiffness matrix derived from	
	preconditioners of the Schur complement matrix	51
2.4	The case of many subdomains	55

xii CONTENTS

2.5	Non-conform	ning domain decomposition methods	59
	2.5.1 The	mortar method	60
	2.5.2 The	three-field method at the finite dimensional	
	level		66
3	Iterative D	omain Decomposition Methods at the	
	Discrete Le	· ·	71
3.1	Iterative sub	ostructuring methods at the finite element le-	
	vel		71
3.2	The link bet	ween the Schur complement system and iter-	
	ative substru	ucturing methods	73
3.3	Schur compl	lement preconditioners	77
	3.3.1 Deco	emposition with two subdomains	77
	3.3.2 Deco	emposition with many subdomains	79
3.4	The Schwarz	z method for finite elements	86
3.5	Acceleration	of the Schwarz method	91
	3.5.1 Inexa	act solvers	96
3.6	Two-level m	ethods	96
	3.6.1 Abst	ract setting of two-level methods	97
	3.6.2 Mult	iplicative and additive two-level precondition-	
	ers		98
		case of the Schwarz method	99
	3.6.4 Conv	vergence of two-level methods	99
3.7	Direct Gale	rkin approximation of the Steklov-Poincaré	
	equation		100
4	Convergence	e Analysis for Iterative Domain Decom-	
	position Ala	gorithms	103
4.1	Extension the	neorems and spectrally equivalent operators	104
		ension theorems in $H^1(\Omega_i)$	104
		ension theorems in $H({ m div};\Omega_i)$	111
		ension theorems in $H(\mathrm{rot};\Omega_i)$	114
4.2	Splitting of	operators and preconditioned iterative meth-	
	ods		117
		finite dimensional case	122
		case of symmetric matrices	125
		case of complex matrices	128
4.3	•	e of the Dirichlet–Neumann iterative method	133
		alternative way to prove convergence	133
4.4	_	e of the Neumann-Neumann iterative method	135
4.5		e of the Robin iterative method	135
4.6	Convergence	e of the alternating Schwarz method	137
5		ndary Value Problems	14
5.1	Non-symme	tric elliptic operators	14:

α	へんてい	תיוח	JTS
) I N	יו,ים ו	

х	1	ı	1

	5.1.1	Weak multi-domain formulation and the Steklov-	
	- 10	Poincaré interface equation	142
	5.1.2	Substructuring iterative methods	146
	5.1.3	The finite dimensional approximation	147
5.2		roblem of linear elasticity	147
	5.2.1	Weak multi-domain formulation and the Steklov-	
		Poincaré interface equation	148
	5.2.2	Substructuring iterative methods	151
	5.2.3	The finite dimensional approximation	151
5.3		tokes problem	153
	5.3.1	Weak multi-domain formulation and the Steklov-	
		Poincaré interface equation	156
	5.3.2	Substructuring iterative methods	170
	5.3.3	Finite dimensional approximation: the case of dis-	
		continuous pressure	173
	5.3.4	Finite dimensional approximation: the case of con-	
		tinuous pressure	185
	5.3.5	Methods based on the Uzawa pressure operator	189
5.4	The S	tokes problem for compressible flows	190
	5.4.1	Weak multi-domain formulation and the Steklov-	
		Poincaré interface equation	191
	5.4.2	Substructuring iterative methods	194
	5.4.3		195
5.5		tokes problem for inviscid compressible flows	197
	5.5.1	Weak multi-domain formulation and the Steklov-	
		Poincaré interface equation	198
	5.5.2	-	201
	5.5.3	The finite dimensional approximation	202
5.6		order equations	203
	5.6.1	Weak multi-domain formulation and the Steklov-	200
	0.0.1	Poincaré interface equation	204
	5.6.2	Substructuring iterative methods	208
5.7		me-harmonic Maxwell equations	210
J. 1		Weak multi-domain formulation	210
	5.7.1	The finite dimensional Steklov-Poincaré interface	211
	5.7.2		213
	r - - 0	equation	213
	5.7.3	Substructuring iterative methods	214
3	Advec	tion–Diffusion Equations	219
5.1	The ac	lvection–diffusion problem and its multi-domain for-	
	mulati	ons	220
5.2	Iterati	ve substructuring methods for one-dimensional prob-	
	lems	<u> </u>	224
5.3		ive iterative substructuring methods: ADN, ARN	
•	and A		227

xiv CONTENTS

	6.3.1	The damped form of the iterative algorithms: d-ADN, d-ARN and d-AR $_{\beta}$ N	232
6.4	Coorci	ive iterative substructuring methods: γ -DR and γ -	202
0.4	RR	tve iterative substituting memods. 210 and	234
	6.4.1	The γ -DR iterative method	234
	6.4.2	Convergence of the γ -DR iterative method	237
	6.4.3	The γ-DR iterative method for systems of advec-	
	0.4.0	tion-diffusion equations	239
	6.4.4	The γ -RR iterative method	240
	6.4.5	Convergence of the γ -RR iterative method	242
6.5		nite element realisation of the iterative algorithms	244
-	m:	Dan and ant Broblems	251
7		Dependent Problems	252
7.1		olic problems Multi-domain formulation and space discretisation	253
	7.1.1	Implicit time discretisation and subdomain itera-	200
	7.1.2	-	256
7.0	TT	tions	261
7.2		bolic problems Multi-domain formulation	263
			200
	7.2.2	tions	266
7 2	Non li	tions inear time-dependent problems	272
7.3			273
	$7.3.1 \\ 7.3.2$		275
	7.3.2	Euler equations for compressible flows	277
	1.3.3	Edier equations for compressions nows	
8	Heter	ogeneous Domain Decomposition Methods	285
8.1	Heter	ogeneous models for advection-diffusion equations	287
	8.1.1	The Steklov-Poincaré reformulation	290
	8.1.2	The coupling for non-linear convection-diffusion	
		equations	295
8.2	Heter	ogeneous models for incompressible flows	296
	8.2.1		297
	8.2.2	The coupling for the Navier-Stokes equations in	
		exterior domains	300
8.3	Heter	ogeneous models for compressible flows	305
	8.3.1	The coupling between the Navier-Stokes and Euler	
		equations	306
	8.3.2	The coupling between the Euler equations and the	
		full potential equation	309
8.4	The c	coupling for the compressible Stokes equations	317
	8.4.1	Variational formulation and finite element approx-	
		imation	320
	8.4.2	An alternative formulation: variational setting and	
		finite element approximation	322

	CONTENTS	xv
3.5	The coupling for the time-harmonic Maxwell equations	328
9	Appendix	333
).1	Function spaces	333
9.2	Some properties of the Sobolev spaces	339
Ref	erences	343
\mathbf{Ind}	ex	357

CONTENTS