CONTENTS

PREFACE			
I. INTRODUCTION	1		
§ 1. Review of previous work	1		
§ 2. Some theorems on linear equations in Banach spaces	21		
§ 3. Stereographic projection	30		
§ 4. Completely continuous operators	32		
II. SIMPLEST PROPERTIES OF MULTIDIMENSIONAL SINGULAR INTEGRALS	37		
	37		
§ 5. Basic concepts	46		
§ 6. Lipschitz conditions	50		
§ 7. Order of singular integrals at infinity	59		
§ 8. Differentiation of integrals with a weak singularity	00		
III COMPOUNDING OF SINGULAR INTEGRALS	63		
§ 9. Compounding of singular and ordinary integrals	6 3		
§ 10. Compounding of double singular integrals	67		
§ 11. The concept of a singular operator	70		
§ 12. Compounding of double singular integrals. The symbol	71		
§ 13. Compounding of multidimensional singular integrals	72		
§ 14. Formulae for reference	74		
§ 15. Product of the operators A_1 and A_n	77		
§ 16. Product of the operators A_2 and A_n	81		
§ 17. Calculation of $\varkappa_{1,m}$	83		
§ 18. Symbol of a multidimensional singular integral	86		
IV. PROPERTIES OF THE SYMBOL	93		
§ 19. Fourier transform of a singular kernel	93		
§ 20. Fourier transform of a kernel and the symbol of a singular	. 9′		
operator 8 21 Transformation of the symbol under change of variables	10-		
8 91 Transformation of the symbol under change of variables	10.		

		99	T) (C) (C) -1 (1) (100
			Differentiability of the symbol	109
	3	23.	The conditions for the continuity of the symbol	112
.,		TNIC	THE A DESCRIPTION OF STREET	110
١.	2	MINU	${f SULAR}$ INTEGRALS IN L_p SPACES	116
8	3	24.	The simplest corollaries from the Fourier transform. First	
•	,		theorem on boundedness in L_2 space	116
5	:	95	Symbol dependent on the pole. Second theorem on bounded-	***
;	,	40.		119
		0.0	ness in L_2 space	119
5	3	26.	On the boundedness of a singular integral operator in $\boldsymbol{L_p}$	100
			space	123
			Integrals taken over any manifold	130
\$	3	28.	Differential properties of singular integrals	131
				• • •
VI.	•	FUI	RTHER INVESTIGATION OF THE SYMBOL	134
	:	90	More about the differentiation of integrals with a weak	
•	5	20.	singularity	134
		20	•	
			Polyharmonic potentials	135
			Series of spherical functions	136
			Differential properties of the symbol and the characteristic	
			Rule for the multiplication of the symbols in the general case	150
3	Š	34.	Conjugate singular operator	154
17 T	T	OT	MOTHER D. INVESCIDAT. POLITICANO	3
V I.	L.	211	NGULAR INTEGRAL EQUATIONS	157
1	Ş	35.	The case where the symbol is independent of the pole	157
			The case where the symbol is dependent on pole. Regulariza-	
•	0		tion and domains of constancy of the index	158
1	3	37	Equivalent regularization. Index theorem	160
			Equations with an integral taken over a closed manifold	
3	3	39.	Extension by means of the parameter	180
			Systems of singular integral equations	184
3	3	41.	Singular integral equations in classes of Lipschitz functions	190
57 T			TOODIT A VEGIC A DET TO A MYONG	100
V I		. M	ISCELLANEOUS APPLICATIONS	199
8	\$	42.	Leading derivatives of volume potential	199
			Problem of the oblique derivative	203
			Inequality involving the tangential and normal components	200
•	3	TT.		മെല
	2	4 =	of the gradient of a harmonic function	208
			Equilibrium of an isotropic elastic body	210
3	3	46.	Diffraction of stationary elastic waves	220

CONTENTS	ix
APPENDIX. Multipliers of Fourier integrals	225
BIBLIOGRAPHY	241
INDEX	251
OTHER TITLES IN THE SERIES	257