Contents

Preface to the English Edition	х
Preface	
	xii
Chapter I. Comparison Functions	1
I.1. Basic concepts of asymptotic methods	1
1. Symbols O , o , and \sim	1
2. Asymptotic series and their properties. Asymptotic ansatz	3
3. Properties of asymptotic expansions	3 5 7
I.2. The Airy functions and their asymptotics	7
1. The Airy equation. Standard solutions. Relations between solutions	
2. Formal solutions of the Airy equation at infinity	7
3. Derivation of asymptotic expansion for the Airy function from	10
integral representation at $ \arg z \le 2\pi/3 - \varepsilon$	
4. The Stokes phenomenon for the Airy equation	11
5. Justifying formal asymptotic solutions of the Airy equation by	14
using integral equations	1.77
I.3. Parabolic cylinder functions and their asymptotics	17
1. The Weber equation. Standard solutions and relations between	21
solutions solutions	21
2. Asymptotics of the parabolic cylinder functions for large argu-	21
ments	25
3. Modified parabolic cylinder functions and their asymptotics	30
I.4. The Bessel functions and their asymptotics	31
1. The Bessel equation. Standard solutions and relations between	91
solutions	31
2. Asymptotics of cylinder functions for large arguments	32
3. Asymptotic solutions of the equation	32
$y''(z) + [1/z + (1 - m^2)/(4z^2)]y(z) = 0$	35
4. The equation $w''(z) - az^m w(z) = 0$: Solutions and their asymp-	33
totics	37
I.5. Confluent hypergeometric function and its asymptotics	40
1. Confluent hypergeometric equation. The functions $\Phi(a, c, z)$ and	40
$\Psi(a,c,z)$ and relations between them	40
2. Asymptotics of the functions $\Phi(a,c,z)$ and $\Psi(a,c,z)$	43
3. The Whittaker functions and their asymptotics	45
Comments	47

viii CONTENTS

Chapter II. Derivation of Asymptotics	49
II.1. General theory	49
1. Reduction of second order equations to the canonical form	49
2. Formal theory for equations without transition points	50
3. The Liouville-Green transformation	56
II.2. Asymptotic solutions on the complex plane	59
1. Turning points, Stokes lines, canonical domains	59
2. Primary fundamental system of solutions in a canonical domain	62
3. Relation matrices	65
II.3. Method of comparison equations for equations with one transition	00
point	69
1. Formal procedure of the method of comparison equations	69
2. Method of comparison equations for equations with one simple	0.5
turning point	71
3. Asymptotics far from a turning point	73
4. Local asymptotic expansions near a turning point	76
5. Turning point of multiplicity m	
6. Equations with one simple pole	77
II.4. Method of comparison equations for equations with two transition	80
points	0.1
1. Formal analysis of equations with two simple turning points	81
2. Regularization of phase integrals	81
	85
3. Formal analysis of equations with one simple turning point and one simple pole	
	90
II.5. Method of comparison equations for equations with close transition points	0.0
1. Scaling transformations	92
2. Two close turning points	92
3. Close pole and turning point	94
Comments	97
Comments	99
Chapter III. Physical Problems	101
III.1. The WKB method for bound states in quantum mechanics	101
1. Anharmonic oscillator. Highly excited states	101
2. Anharmonic oscillator. Small perturbations	107
3. Quantization for potentials Coulomb-type singularity	111
III.2. Normal modes in ocean waveguide	118
1. Formulation of the problem	118
2. Asymptotic formulas for normal modes and phase velocities	120
III.3. Exponential spectrum splitting	123
1. Two symmetric potential wells	123
2. Symmetric two-center problem	123 127
III.4. Quasistationary states	131
1. Stark effect in hydrogen	
2. Ionization in electric field	131
III.5. One-dimensional scattering problem	134
1. Semiclassical asymptotics of the Jost functions and scattering	136
phases for potentials with Coulomb singularity	196
2. Wave transition through a potential barrier	136
standard and again a potential partier	139

CONTENTS

ix

3. Overbarrier reflection	143
III.6. Band spectrum	147
1. Equations with periodic potential	147
2. Asymptotic formulas for bandwidths	149
3. The Mathieu equation	152
Comments	152
Chapter IV. Supplements	155
IV.1. Numerical realization of asymptotic methods	155
1. Approximation of potential and evaluation of phase integrals	155
2. Approximation of the derivatives of a potential at a point	158
IV.2. The Prüfer transformation and iterative modification of the WKB	
method	160
1. The Prüfer transformation	160
2. Iterative procedure for solving equations for amplitude and	
phase and its connection with asymptotic expansions	162
IV.3. Solutions of $z^2w'' - (z^3 + a_2z^2 + a_1z + a_0)w = 0$	164
1. Standard solutions	164
2. Representation of solutions in terms of the Mellin-Barnes inte-	
grals	167
3. Connection between the solutions $I_{\mathfrak{a}}^{(j)}(z)$ and $K_{\mathfrak{a}}^{(k,r)}(z)$	174
4. Difference equation for connection factors	180
Comments	183
· ·	
References	185