Contents

Volume I

PREFACE		g
Chapter 0		
	UISITES AND PRELIMINARIES	13
	t Theory	13
§ 2 A	lgebra	14
	ne Battlefield	14
	etric Spaces	15
	msup and All That	18
§ 6 C	ontinuous Functions	20
§ 7 Ca	ılculus	21
Chapter I		
Curves	, Connectedness and Convexity	22
§1 Ele	ementary Results on Connectedness	22
§2 Co	nnectedness of Intervals, Curves and Convex Sets	23
§3 Th	e Basic Connectedness Lemma	28
§4 Co	mponents and Compact Exhaustions	29
	onnectivity of a Set	33
	tension Theorems	37
Notes t	o Chapter I	39
Chapter II		
(Compl	ex) Derivative and (Curvilinear) Integrals	41
§1 Ho	olomorphic and Harmonic Functions	41
	egrals along Curves	44
	fferentiating under the Integral	47
	Useful Sufficient Condition for Differentiability	49
Notes t	o Chapter II	50
Chapter III		
Power	Series and the Exponential Function	53
§1 Int	roduction	53
§ 2 Po	wer Series	53
§ 3 Th	e Complex Exponential Function	60
§ 4 Be	rnoulli Polynomials, Numbers and Functions	73
§ 5 Ca	uchy's Theorem Adumbrated	77
§6 Ho	lomorphic Logarithms Previewed	78
Notes to	Chapter III	80
Chapter IV		
THE IND	DEX AND SOME PLANE TOPOLOGY	83
§ l Int	roduction	83

6 Contents

	§ 2 Curves Winding around Points	83
	§ 3 Homotopy and the Index	90
	§ 4 Existence of Continuous Logarithms	92
	§ 5 The Jordan Curve Theorem	102
	§ 6 Applications of the Foregoing Technology	106
	§ 7 Continuous and Holomorphic Logarithms in Open Sets	111
	§ 8 Simple Connectivity for Open Sets	113
	Notes to Chapter IV	115
Chapte	er V	
	Consequences of the Cauchy-Goursat Theorem-Maximum	
	PRINCIPLES AND THE LOCAL THEORY	120
	§ 1 Goursat's Lemma and Cauchy's Theorem for Starlike Regions	120
	§ 2 Maximum Principles	127
	§ 3 The Dirichlet Problem for Disks	134
	§ 4 Existence of Power Series Expansions	144
	§ 5 Harmonic Majorization	151
	§ 6 Uniqueness Theorems	165
	§ 7 Local Theory	172
	Notes to Chapter V	183
Chapte	er VI	
r	SCHWARZ' LEMMA AND ITS MANY APPLICATIONS	191
	§ 1 Schwarz' Lemma and the Conformal Automorphisms of Disks	191
	§ 2 Many-to-one Maps of Disks onto Disks	197
	§ 3 Applications to Half-planes, Strips and Annuli	198
	§ 4 The Theorem of Carathéodory, Julia, Wolff, et al.	203
	§ 5 Subordination	207
	Notes to Chapter VI	215
Chapte	er VII	
Chapti	CONVERGENT SEQUENCES OF HOLOMORPHIC FUNCTIONS	218
	§ 1 Convergence in $H(U)$	218
	§ 2 Applications of the Convergence Theorems; Boundedness	
	Criteria	228
	§ 3 Prescribing Zeros	237
	§ 4 Elementary Iteration Theory	242
	Notes to Chapter VII	251
Chapte	er VIII	
•	POLYNOMIAL AND RATIONAL APPROXIMATION—RUNGE THEORY	256
	§ 1 The Basic Integral Representation Theorem	256
	§ 2 Applications to Approximation	260
	§ 3 Other Applications of the Integral Representation	265
	§ 4 Some Special Kinds of Approximation	268
	§ 5 Carleman's Approximation Theorem	273
	§ 6 Harmonic Functions in a Half-plane	276
	Notes to Chapter VIII	289

Contents	7
----------	---

Chapter IX	
THE RIEMANN MAPPING THEOREM	293
§ 1 Introduction	293
§ 2 The Proof of Carathéodory and Koebe	298
§ 3 Fejér and Riesz' Proof	303
§ 4 Boundary Behavior for Jordan Regions	303
§ 5 A Few Applications of the Osgood-Taylor-Carathéodory	000
Theorem	310
§ 6 More on Jordan Regions and Boundary Behavior	315
§ 7 Harmonic Functions and the General Dirichlet Problem	322
§ 8 The Dirichlet Problem and the Riemann Mapping Theorem	333
Notes to Chapter IX	337
Chapter X	
SIMPLE AND DOUBLE CONNECTIVITY	344
§ 1 Simple Connectivity	344
§ 2 Double Connectivity	348
Notes to Chapter X	355
Chapter XI	
Isolated Singularities	359
§ 1 Laurent Series and Classification of Singularities	359
§ 2 Rational Functions	366
§ 3 Isolated Singularities on the Circle of Convergence	375
§ 4 The Residue Theorem and Some Applications	377
§ 5 Specifying Principal Parts—Mittag-Leffler's Theorem	390
§ 6 Meromorphic Functions	395
§ 7 Poisson's Formula in an Annulus and Isolated Singularities	
of Harmonic Functions	398
Notes to Chapter XI	406
Chapter XII	
OMITTED VALUES AND NORMAL FAMILIES	411
§ 1 Logarithmic Means and Jensen's Inequality	411
§ 2 Miranda's Theorem	417
§ 3 Immediate Applications of Miranda	432
§ 4 Normal Families and Julia's Extension of Picard's Great	
Theorem	436
§ 5 Sectorial Limit Theorems	441
§ 6 Applications to Iteration Theory	450
§ 7 Ostrowski's Proof of Schottky's Theorem	451
Notes to Chapter XII	456
Bibliography	462
Name Index	544
Subject Index	
SYMBOL INDEX	
Series Summed	
Series Summed Ntegrals Evaluated	

Contents

Volume II

Chapter XIII

WERMER'S MAXIMALITY THEOREM AND ITS COROLLARIES

Chapter XIV

PHRAGMÉN-LINDELÖF THEORY

Chapter XV

TERATOLOGY

Chapter XVI

OVERCONVERGENCE AND NATURAL BOUNDARIES

Chapter XVII

THE GAP THEOREMS

Chapter XVIII

Univalent Functions—Geometric Methods

Chapter XIX

APPLICATIONS TO BANACH ALGEBRA

BIBLIOGRAPHY