CONTENTS | | | | | | | . 13 | |--|--|--|---|--|--|--------------------------| | es | | | | | | | | | | | | | | | | | Part | 1 | | | | | | Τ | Proliminors | z zaculte | | | | | | 1 | Temmaiy | Tesuits | | | | | | | | | | | | | | and general n | otations . | | | | | . 27 | | . Abbreviation | is. General | notations. | | | | | | | | | | | | | | nd <i>l^p</i> | | | | | | . 3 | | Euclidean n-s | pace R^n (32) |) \Diamond Space I | $L^p(32) \diamondsuit 3$ | Space | l^{p} (33 | 3) | | | | | | | | | | eory | | | | | | . 35 | | y, Gross and area (37) \diamond 1 \diamond Gross theo measure (40) change of mea Tonelli (42) Minkowski (42) | Federer r
Lipschitz co
orem (38) o
O Theore
asure (41)
O Sphere
O The is | neasures (3 condition (3) Function cm of Rad condition Theorem ical n-spaces operimetric | 6) ♦ Sets 7) ♦ Fed ns of a s on—Niko n of Ful se (42) ♦ s inequali | s of Serer— set AC dim (pini (Inec ty for | Z-finit
Youn
Z wit
(40) (
(41) (
qualit
sphe | e
g
h
>
y | | | and general mand general mand general mand general mand. Abbreviation mand lp | Part Preliminary and general notations Abbreviations. General notations. | Part 1 Preliminary results and general notations Abbreviations. General notations. n-space (31) \$\lorentleftarrow\$ Normed linear so Euclidean n-space R^n (32) \$\lorentleftarrow\$ Space in the function (33) \$\lorentleftarrow\$ Step function (33) \$\lorentleftarrow\$ Step function (33) \$\lorentleftarrow\$ Step function (35) \$\lorentleftarrow\$ Function (36) \$\lorentleftarrow\$ Gross theorem (38) \$\lorentleftarrow\$ Function (37) \$\lorentleftarrow\$ Lipschitz condition (37) \$\lorentleftarrow\$ Gross theorem (38) \$\lorentleftarrow\$ Function \$\lorentleftarrow | Part 1 Preliminary results and general notations Abbreviations. General notations. n-space (31) \$\lorentlerightarrow\$ Normed linear space (32) Euclidean n-space \$R^n\$ (32) \$\lorentlerightarrow\$ Space \$L^p\$ (32) \$\lorentlerightarrow\$ Step function (33) \$\lorentlerightarrow\$ Step function (33) \$\lorentlerightarrow\$ Step function (33) \$\lorentlerightarrow\$ Step function (37) \$\lorentlerightarrow\$ Step functions of a set (37) \$\lorentlerightarrow\$ Lipschitz condition (37) \$\lorentlerightarrow\$ Functions of a set (37) \$\lorentlerightarrow\$ Lipschitz condition (37) \$\lorentlerightarrow\$ Functions of a set (37) \$\lorentlerightarrow\$ Lipschitz condition (37) \$\lorentlerightarrow\$ Functions of a set (37) \$\lorentlerightarrow\$ Lipschitz condition (37) \$\lorentlerightarrow\$ Functions of a set (37) \$\lorentlerightarrow\$ Lipschitz condition (37) \$\lorentlerightarrow\$ Functions of a set (40) \$\lorentlerightarrow\$ Theorem of Radon—Nikochange of measure (40) \$\lorentlerightarrow\$ Theorem of Functions (42) \$\lorentlerightarrow\$ Spherical \$n\$-space (42) \$\lorentlerightarrow\$ Minkowski (42) \$\lorentlerightarrow\$ The isoperimetric inequality. | Part 1 Preliminary results and general notations Abbreviations. General notations. n-space (31) \$\lorentline\$ Normed linear space (32) \$\lorentline\$ Euclidean n-space \$R^n\$ (32) \$\lorentline\$ Space \$L^p\$ (32) \$\lorentline\$ Space ristic function (33) \$\lorentline\$ Step function (33) \$\lorentline\$ Cl cory f a set (35) \$\lorentline\$ Lebesgue measure (35) \$\lorentline\$ Hause y, Gross and Federer measures (36) \$\lorentline\$ Sets of \$\lorentline\$ area (37) \$\lorentline\$ Lipschitz condition (37) \$\lorentline\$ Federer \$\lorentline\$ Gross theorem (38) \$\lorentline\$ Functions of a set \$AC\$ a measure (40) \$\lorentline\$ Theorem of Radon—Nikodim (change of measure (41) \$\lorentline\$ Theorem of Fubini (42) \$\lorentline\$ Spherical \$n\$-space (42) \$\lorentline\$ Inequality for | English language edition | | 4. | | | |----|--|--------| | | Theorem of Rademacher—Stepanov | 44 | | | Theorem of Roger (44) ♦ Theorem of Rademacher-Stepanov (44) | | | 5. | | | | | The modulus of a curve family | 46 | | : | Curves (46) \diamond The modulus of a family of q-dimensional surfaces (47) \diamond p-exceptional curve families (47) \diamond Properties of the p-modulus of an arc family (48) \diamond Modulus of a ring (51) \diamond The spherical ring (51) \diamond p-modulus of non-rectifiable curves (52) \diamond Inequality of Hardy—Littlewood and Polya on the rearrangement of functions (53) \diamond A property of the modulus of some rings (54) \diamond Other properties of the arc families (58) \diamond Modulus of a cylinder (69) \diamond Rengel's inequality (in n-space) (70) \diamond Modulus of an interval (70) | | | 6. | | | | | ACL mappings | 71 | | | Mappings with bounded variations (71) \Diamond The derivative of a mapping of a real variable (71) \Diamond AC mappings (71) \Diamond ACL mappings (72) \Diamond ACL mappings (73) \Diamond The points of Lebesgue (73) \Diamond ACA mappings on a surface (74) | | | 7. | • | | | | Subharmonic and superharmonic functions | . 75 | | | Harmonic functions (75) \Diamond Subharmonic functions (75) \Diamond Superharmonic functions (75) \Diamond Dirichlet domain (75) \Diamond Properties of subharmonic and superharmonic functions (76) | : | | | Part 2 | | | | Definitions of QCfH and their equivalence | | | 1. | • | | | | Väisälä's definitions of K-QCfH and their equivalence | . 81 | | | Metric definition (83) ♦ First geometric definition (by modulus of arc families) (83) ♦ First analytic definition (83) ♦ The class of QCfH is a group (83) ♦ The equivalence of the three definitions (83) ♦ Second analytic definition (97) ♦ Equivalence of analytic definitions (98) ♦ Second geometric definition (by modulus of rings) | ;
; | | | (102) \diamondsuit The equivalence with the other definitions (102) \diamondsuit Third geometric definition (by modulus of cylinders) (104) \diamondsuit The equivalence with the other definitions (105) | |----|---| | 2 | • | | | Gehring's geometric definition and Loewner's definition of K-QCfH. Their equivalence | | | Conformal capacity of a ring A (cap A) (111) \Diamond Cap $A = M(\Gamma)$ (111) \Diamond The equivalence of Gehring's geometric definition of A K -QCfH and Väisälä's definitions of K^{n-1} -QCfH (125) \Diamond Loewner's definition of K -QCfH (125) \Diamond Its equivalence with Gehring's definition (125) | | 3. | • | | | Gehring's metric definition, Markuševič—Pesin's definition and the definition of K-QCfH with one and with two systems of characteristics. Their equivalence | | | Gehring's metric definition (126) \diamond Connection between Gehring's metric definition and the preceding definitions (126) \diamond Definition of Markuševič-Pesin (127) \diamond K-QCfH with two sets of characteristics (128) \diamond K-QCfH with a set of characteristics (129) \diamond K ₁ ,, K _{n-1} -QCfH (129) \diamond Some properties of the diffeomorphisms (130) \diamond Some properties of the K-QCfH in Markuševič-Pesin's sense (135) \diamond The equivalence between Gehring's metric definition of the K-QCfH and Markuševič-Pesin's (146) \diamond The connection between Gehring's metric definition, Markuševič-Pesin's definition and Gehring's and Väisälä's other definitions (150) \diamond Kopylov's definition (151) \diamond Equivalence between Kopylov's definition, the definitions of K-QCfH with one or two principal characteristics and Markuševič-Pesin's definition (152) | | 4 | • | | | K-QCfH in Kreines' sense and Callender's K-QCfH | | | Sobolev's derivatives (153) \diamondsuit Analytic definition of K-QCfH in Kreines' sense (153) \diamondsuit Equivalence between Kreines' definition and the other definitions (153) \diamondsuit Callender's definition (156) \diamondsuit Equivalence between the definitions of the K-QCfH in Kreines' sense and | | | Callender's definition of the K^{2} -QCfH (156) | | 5. | • | | | Šabat's definition of the K-QCfH and Kühnau's definitions of K_I , K_O -QCfH | | | Šabat's definition (158) \Diamond Connexion between Šabat's and Markuševič—Pesin's definitions (158) \Diamond Equivalence of the definition of K -QCfH in Šabat's sense for $q=n-1$ and Gehring's analytic and geometric definition (169) \Diamond Kühnau's definitions (202) \Diamond Equivalence between Kühnau's definitions and Šabat's and Väisälä's definitions (202) | | 6. | |--| | Gehring's analytic definitions and their equivalence to his geometric definition | | Gehring's first analytic definition (203) \Diamond Its equivalence to his geometric definition (203) \Diamond Gehring's second analytic definition (210) \Diamond The equivalence of the two Gehring's analytic definitions (210) \Diamond Church's definitions (211) \Diamond Equivalence between Church's definition of QCfH diffeomorphisms and the others (211) | | 7. | | A more general form for Gehring's metric definition of K-QCfH equivalent to his preceding metric definition | | The new form for Gehring's metric definition (212) \diamondsuit Equivalence to his preceding metric definition (212) \diamondsuit A more general form for the preceding Gehring's and Väisälä's definitions of K-QCfH and the equivalence to the corresponding definitions (215) | | 8. | | Conformal mappings and the corresponding elliptic system 217 | | Conformal mappings (217) \diamondsuit The corresponding elliptic system (217) | | 9. | | The definition of Θ-mappings and its equivalence to the definition of QCfH | | Θ -mappings (219) \Diamond Spherical symmetrization of sets (219) \Diamond A property of the spherical symmetrization of a polyhedron (220) \Diamond Spherical symmetrization of a function (226) \Diamond Properties of spherical symmetrization of functions (227) \Diamond Spherical symmetrization of rings (229) \Diamond Properties of spherical symmetrization of rings (229) \Diamond The Grötzsch ring (232) \Diamond The Teichmüller ring (232) \Diamond Properties of the moduli of these rings (232) \Diamond Loewner's lemma (242) \Diamond Loewner's theorem (247) \Diamond Equivalence of the definition of Θ -mappings to the definitions of QCfH (248) \Diamond Generalization of Koebe's theorem (251) | | 10. | | Agard—Gehring's definition of K-QCfH | | 11. | | Definitions of Grötzsch's, of Lavrent'ev's, of Teichmüller's and of Andreian's types for the QCfH | | A general formulation for the definitions of Grötzsch's type (269) \Diamond The class of definitions of Lavrent'ev's type (273) \Diamond The class of definitions of Teichmüller's type (273) \Diamond The class of definitions of Andreian's type (273) | | 12. | | |--------------------|--| | C | Characterization of QCfH by the Hurwitz property | | F
n | Normal families of homeomorphisms (274) \Diamond Hurwitz property (274) \Diamond Families of homeomorphisms complete with respect to the similarity nappings (274) \Diamond QCfH characterized by the Hurwitz property (274) \Diamond Equivalence with the other definitions (274) | | 13. | | | A | compactness characterization for QCfH | | C | ome properties of the sequences of QCfH (281) \Diamond Compactness ondition (A) (283) \Diamond QCfH characterized by a compactness condition (283) \Diamond The equivalence to other definitions (284) | | 14. | | | N | Markuševič's definition of the K-QCfH mappings | | | nterior transformations in the sense of Stoïlow (286) | | 15. | | | | -dimensional pseudoconformal transformation (PCT) and 2 <i>n</i> -dimensional PCf diffeomorphisms | | m
b | CT (288) \$\rightarrow\$ First order elliptic systems (288) \$\rightarrow\$ Discwise QCf diffeonorphisms (Hitotumatu) (291) \$\rightarrow\$ QPCT (Bergman) (291) \$\rightarrow\$ Connection etween discwise QCf diffeomorphisms and PCT (292) \$\rightarrow\$ Another efinition of discwise QCf diffeomorphisms (Hitotumatu) (294) | | 16. | | | D | Different definitions of the conformal mappings | | o
H
ti
tl | Characterization of the conformal mappings by means of the modulus f a ring (295) \Diamond The conformal mappings form a group (295) \Diamond Tölder's continuity of QCfH (296) \Diamond Conformal mappings are restrictors of Möbius transformations (297) \Diamond Other characterizations of the conformal mappings (309) \Diamond Conformal-conjugate functions (316) \Diamond Connection between conformal mappings and harmonic functions (319) \Diamond Theorem of Reade (323) \Diamond Arcolar derivatives and conformal mappings (325) \Diamond Points of analyticity (327) | | 17. | | | | C-QCfH between surfaces | | Р | nner, outer and maximal dilatations of homeomorphisms (334) \Diamond roperties of the dilatations (334) \Diamond Quasi-isometries (336) \Diamond Some roperties of the quasi-isometries (336) \Diamond Admissible surfaces (337) \Diamond | Projection mapping (337) \diamondsuit Some properties of the projections (337) \diamondsuit Geometric definition of K-QCfH between two admissible surfaces by means of quasi-isometries (340) \diamondsuit Measurability of QCfH between surfaces (340) \diamondsuit Surface modulus of an arc family (341) \diamondsuit Analytic definition of K-QCfH between admissible surfaces (342) \diamondsuit Equivalence between analytic and geometric definitions (343) \diamondsuit Geometric definition of K-QCfH between two admissible surfaces by means of the surface modulus of a curve family (347) \diamondsuit Equivalence to the preceding definitions (347) ## Part 3 ## Some properties of the QCfH | 1. | |--| | The Carathéodory convergence theorem | | Some properties of the sequences of homeomorphisms (351) \diamondsuit Carathéodory convergence of a sequence of domains (353) \diamondsuit Carathéodory convergence theorem (354) | | 2. | | Stability of Liouville's theorem | | 3. | | Cluster sets of QCfH | | Cluster sets (360) ♦ Existence theorem for locally homeomorphic QCf mappings with a given cluster set (360) ♦ Existence theorem for QCfH with a given cluster set (369) ♦ Space analogue of Lindelöf's theorem (372) | | 4. | | Boundary correspondence of two domains QCf (quasiconformally) equivalent | | Boundary correspondence induced by QCfH (379) \Diamond The reflection principle for QCfH (381) \Diamond Boundary correspondence of two Jordan domains (383) \Diamond Space analogue of Koebe's theorem (384) \Diamond Other results on boundary correspondence induced by QCfH (388) \Diamond Extension of QCfH from two to three dimensions (400) | | 5. | | Existence theorems in the small for QCfH 401 | ## 6. | Coefficients of QCf (quasiconformality) | |--| | Coefficients of QCf (404) \diamond Lower semicontinuity of dilatations \diamond $K_I(f)$, $K_0(f)$, $K(f)$ (405) \diamond Extremal QCfH (405) \diamond Lower semicontinuity of the coefficients of QCf (407) \diamond Upper bounds for the coefficients of QCf of starlike domains (408) \diamond Upper bounds for bounded convex domains (413) \diamond Lower bounds for the coefficients of QCf of certain domains (414) \diamond The inner coefficients of QCf of a dihedral wedge of type \vee (425) \diamond Bounds for the outer and the total coefficients of QCf of the dihedral wedge of type \vee (431) \diamond Bounds for the outer coefficients of QCf of an infinite cylinder (435) \diamond Bounds for inner and total coefficients of QCf of an infinite cylinder (443) \diamond Bounds for the outer coefficient of QCf of the cone (447) \diamond Bounds for the coefficients of QCf of domains with spires in their boundary (457) \diamond Ridges (464) \diamond Bounds for the coefficients of QCf of domains whose boundary contains a ridge (465) \diamond The space of domain QCf equivalent to a ball (468) \diamond Completeness of the space \mathscr{D} (469) \diamond Non-separability of the space \mathscr{D} (470) | | Bibliography | | Works concerning <i>n</i> -dimensional quasiconformal mappings (477) \Diamond Works on quasiconformal mappings in plane (496) \Diamond Other works quoted in the monograph (540) | | Author index |