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CHAPTER 2: THE APPEARANCE OF CURVATURE

(a) Heuristic reasoning

It is shown that curvature considerations arise naturally in
trying to measure the ramification of an entire meromorphic
function. The use of negative curvature is illustrated,

(b) Volume forms

Volume forms and their Ricci forms are introduced and some
examples given. The main construction of singular volume
forms is presented.

(¢) The Ahlfors lemma

The ubiquitous Ahlfors lemma is proved and applications to
Schottky-Landau type theorems are given, following which

appears a value distribution proof of the Big Picard Theorem.

(d) The Second Main Theorem

The main integral formula (2.29) and subsequent basic
estimate (2.30) concerning singular volume forms on Cn are
derived.

CHAPTER 3: THE DEFECT RELATIONS

(a) Proof of the defect relations
The principal theorem 3.4 and some corollaries are proved.

(b) The lemma on the logarithmic derivative
A generalization of R. Nevanlinna’s main technical estimate
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are discussed.
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special case of entire meromorphic functions of finite order.
We have chosen one such, due to Erdrei and Fuchs, to
illustrate the flavor of some of these results.
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