CONTENTS

Chapter I PRELIMINARIES . . .

2.

3.

1.	Plane quasiconformal mappings	
2.	Modulus estimates	
3.	Quasidisks	
Chapt	er II CHARACTERISTIC PROPERTIES OF QUASIDISKS	
1.	Introduction	
2.	Reflection property	
3.	Local connectivity properties	
4.	Hyperbolic metric properties	
5.	Injectivity properties	
6.	Extension properties	
7.	Homogeneity properties	
8.	Miscellaneous properties	
Chapt	er III SOME PROOFS OF THESE PROPERTIES	
1.	Table of implications	

Quasidisks have the hyperbolic segment property

Hyperbolic segment property implies $\, D \,$ is uniform

5.	Linear local connectivity implies the three point property 5	7
6.	Three point property implies D is a quasidisk	9
7.	Uniform domains have the Schwarzian derivative property 6	5
8.	Schwarzian derivative property implies D is linearly locally	
•	connected	'2
9.	Quasidisks have the BMO extension property	7
10.	BMO extension property implies hyperbolic bound property	
11.	Hyperbolic bound property implies hyperbolic segment property 8	
Chapt	er IV EPILOGUE	2
REFER	ENCES	5

55

4.