TABLE OF CONTENTS

Preface	xiii
Notation	xvii
Chapter 1. Preliminary Information About Integration Theory	1
§1. Notation and Terminology	1
1.1. Sets in \mathbb{R}^n	1
1.2. Classes of Functions in \mathbb{R}^n	1 3 7
§2. Some Auxiliary Information about Sets and Functions in \mathbb{R}^n	7
2.1. Averaging of Functions	7
2.2. The Whitney Partition Theorem	11
2.3. Partition of Unitiy	12
§3. General Information about Measures and Integrals	15
3.1. Notion of a Measure	15
3.2. Decompositions in the Sense of Hahn and Jordan	16
3.3. The Radon-Nikodym Theorem and the	
Lebesgue Decomposition of Measure	21
§4. Differentiation Theorems for Measures in \mathbb{R}^n	28
4.1. Definitions	28
4.2. The Vitali Covering Lemma	32
4.3. The L_p -Continuity Theorem for Functions of the Class $L_{p,loc}$	33
4.4. The Differentiability Theorem for the Measure in \mathbb{R}^n	38
§5. Generalized Functions	39
5.1. Definition and Examples of Generalized Functions	39
5.2. Operations with Generalized Functions	42
5.3. Support of a Generalized Function. The Order of Singularity	
of a Generalized Function	46
5.4. The Generalized Function as a Derivative of the Usual	
Function. Averaging Operation	49
Chapter 2. Functions with Generalized Derivatives	55
§1. Sobolev-Type Integral Representations	55
1.1. Preliminary Remarks	55
1.2. Integral Representations in a Curvilinear Cone	60
1.3. Domains of the Class J	69
1.4. Integral Representations of Smooth Functions in Domains	
of the Class J	77

§2. Other Integral Representations	84
2.1. Sobolev-Type Integral Representations for Simple Domains	84
2.2. Differential Operators with the Complete Integrability Condition	on 96
2.3. Integral Representations of a Function in Terms of a System	
of Differential Operators with the Complete Integrability	
Condition	105
2.4. Integral Representations for the Deformation Tensor	
and for the Tensor of Conformal Deformation	108
§3. Estimates for Potential-Type Integrals	117
3.1. Preliminary Information	117
3.2. Lemma on the Compactness of Integral Operators	119
3.3. Basic Inequalities	121
§4. Classes of Functions with Generalized Derivatives	125
4.1. Definition and the Simplest Properties	125
4.2. Integral Representations for Elements of the Space $\overline{W}_{1,loc}^l$	125
4.3. The Imbedding Theorem	131
4.4. Corollaries of Theorem 4.2. Normalization of the Spaces $W_p^l(U)$) 133
4.5. Approximation of Functions from W_p^l by Smooth Functions	141
4.6. Change of Variables for Functions with Generalized Derivatives	
4.7. Compactness of the Imbedding Operators	152
4.8. Estimates with a Small Coefficient for the Norm in L_p^l	158
4.9. Functions of One Variable	160
4.10. Differential Description of Convex Functions	162
4.11. Functions Satisfying the Lipschitz Condition	164
§5. Theorem on the Differentiability Almost Everywhere	167
5.1. Definitions	167
5.2. Auxiliary Propositions	170
5.3 The Main Result	171
5.4. Corollaries of the General Theorem on the Differentiability	
Almost Everywhere	173
5.5. The Behaviour of Functions of the Class W_p^l on Almost All	
Planes of Smaller Dimensionality	179
5.6. The ACL-Classes	181
Chapter 3. Nonlinear Capacity	182
§1. Capacity Induced by a Linear Positive Operator	183
1.1. Definition and the Simplest Properties	183
1.2. Capacity as the Outer Measure	184
1.3. Sets of Zero Capacity	186
1.4. Extension of the Set of Admissible Functions	188
1.5. Extremal Function for Capacity	189
1.6. Comparison of Various Capacities	189
§2. The Classes $W(T, p, V)$	191
2.1. Definition of Classes	191

2.2. Theorems of Egorov and Luzin for Capacity	191
2.3. Dual (T, p) -Capacity, $p > 1$. Definition and Basic Properties	194
2.4. Calculation of Dual (T,p) -Capacity	196
§3. Sets Measurable with Respect to Capacity	206
3.1. Definition and the Simplest Properties of Generalized Capacity	206
3.2. (T, p)-Capacity as Generalized Capacity	206
§4. Variational Capacity	208
4.1. Definition of Variational Capacity	209
4.2. Comparison of Variational Capacity and (T, p) -Capacity	212
4.3. Sets of Zero Variational Capacity	215
4.4. Examples of Variational Capacity	216
4.5. Refined Functions	216
4.6. Theorems of Imbedding into the Space of Continuous Functions	218
§5. Capacity in Sobolev Spaces	223
5.1. Three Types of Capacity	223
5.2. Extremal Functions for Capacity	226
5.3. Capacity and the Hausdorff h-Measure	228
5.4. Sufficient Conditions for the Vanishing of (l, p) -Capacity	232
§6. Estimates of $[l, p]$ -Capacity for Some Pairs of Sets	234
6.1. Estimates of Capacity for Spherical Domains	234
6.2. Estimates of Capacity for Pairs of Continuums Connecting	
Concentric Spheres	237
§7. Capacity in Besov-Nickolsky Spaces	240
7.1. Preliminary Information	240
7.2. Capacities in $b_{l,p,\theta,G,h}^{l}$. Simplest Properties	241
7.3. Comparison of Capacity of a Pair of Points to Capacity	
of a Point Relative to a Complement of a Ball	242
7.4. Capacity of the Spherical Layer	243
Chapter 4. Density of Extremal Functions in Sobolev Spaces with	
First Generalized Derivatives	246
§1. Extremal Functions for $(1, p)$ -Capacity	247
1.1. Simplest Properties of Extremal Functions	247
1.2. The Dirichlet Problem and Extremal Functions	249
1.3. Extremal Functions for Pairs of Smooth Compacts	250
§2. Theorem on the Approximation of Functions from L_p^1 by	
Extremal Functions	253
2.1. Auxiliary Statements	253
2.2. The Class $Ext_p(G)$	25^4
2.3. Proof of the Theorem on Approximation	25
2.4. Representation in Form of a Series	26
§3. Removable Singularities for the Spaces $L_p^1(G)$	26
3.1. Two Ways of Describing Removable Singularities	26
3.2 Proporties of NC Sets Localization Principle	26

Chapter 5. Change of Variables	272
§1. Multiplicity of Mapping, Degree of Mapping, and Their Analogies	272
1.1. The Multiplicity Function of Mapping	272
1.2. The Approximate Differential	274
1.3. The K-Differential	277
1.4. The Change of Variable Theorem for the Multiplicity	
Function	280
1.5. The Degree of Mapping	282
§2. The Change of Variable in the Integral for Mappings of	
Sobolev Spaces	284
2.1. The Change of Variable Theorem for Continuous Mappings	
of the Class L_n^1	284
2.2. The Linking Index	286
2.3. The Change of Variable Theorem for Discontinuous	
Mappings of the Class L_n^1	288
§3. Sufficient Conditions of Monotonicity and Continuity for the	
Approximation Functions of the Class L_n^1	290
§4. Invariance of the Spaces $L_p^1(G)(L_n^1(G))$ for Quasiisometric	
(Quasiconformal) Homeomorphisms	299
4.1. Preliminary Information on the Mappings	299
4.2. Differentiation of Composition	305
4.3. Representation of Operators Preserving the Order	307
Chapter 6. Extension of Differentiable Functions	313
§1. Arc Diameter Condition	313
1.1. Analysis of the Ahlfors Condition	313
1.2. The Arc Diameter Condition	314
1.3. Properties of Domains Satisfying the Arc Diameter Condition	315
§2. Necessary Extension Conditions for Seminormed Spaces	319
2.1. The Extension Operator. Capacitary Extension Condition	319
2.2. Additional Properties of Capacity	320
2.3. The Invisibility Condition	320
2.4. The Extension Theorem	322
2.5. Verification of the Conditions of the Theorem for the Spaces	
$L^l_p(G), W^l_p(G)$	326
§3. Necessary Extension Conditions for Sobolev Spaces	331
3.1. Necessary Extension Conditions for L_p^l, W_p^l at $lp = n$	331
3.2. Necessary Conditions for L_p^l, W_p^l at $1 \le lp \le 2$ in Plane	
Domains	335
3.3 Necessary Conditions Different from the Arc Diameter Condition	337
3.4. Refinement for the Space W_p^l	34 0
§4. Necessary Extension Conditions for Besov and Nickolsky Spaces	342
4.1. Extension Theorem for $lp > n$	342
4.2. Extension Conditions for $lp = n$	343

Table of Contents	хi
§5. Sufficient Extension Conditions	348
5.1. Quasiconformal Extension	348
5.2. Extension Conditions for Sobolev Classes	349
5.3. Example of Estimating the Norm of an Extension Operator	353
5.4. The Extension Condition for Nickolsky-Besov Spaces	354
Comments	355
References	362
Index	369