CONTENTS

IÌ	NTRO	DUCTION	ix
1.	THE	ELEMENTARY THEORY	
	1.0	Introduction	ı
	1.1	The Poisson-Jensen formula	1
	1.2	The characteristic function	3
	1.3	The first fundamental theorem	5
	1.4	Cartan's identity and convexity theorems	8
	1.5	The Ahlfors-Shimizu characteristic	10
	1.6	An application: average and maximum of $n(r, a)$	13
	1.7	Orders of growth	16
	1.8	Comparative growth of $T(r)$ and $\log M(r)$	19
	1.9	Representation of a meromorphic function in terms of its zeros and poles	21
	1.10	Behaviour of Weierstrass products	24
2.	NEV	ANLINNA'S SECOND FUNDAMENTAL THEOREM	
	2.0	Introduction	31
	2.1	The fundamental inequality	31
	2.2	The estimation of $S(r)$	34
		Conditions for $S(r)$ to be small	41
	2.4	Nevanlinna's theory of deficient values: the second fundamental theorem	42
	2.5	Some examples	44
		Deficient functions	47
		Functions taking the same values at the same points	48
		Fix-points of integral functions	49
		A theorem of Pólya	53
3.	DIS'	TRIBUTION OF THE VALUES OF MEROMORPHIC NCTIONS AND THEIR DERIVATIVES	
	3.0	Introduction	55
	3.1	Milloux theory	55
		Milloux's basic results	57
	3.3	Exceptional values of meromorphic functions and their derivatives	59
	3.4	Zeros of meromorphic functions and their derivatives. A theorem of	ac
		Pólya	62
	3.5	The theory of Tumura-Clunie	67
	3.6	Conclusion	77

4. FURTHER RESULTS ABOUT DEFICIENCIES			
4.0 Introduction	79		
4.1 An integral function with assigned deficiencies	80		
4.2 On the deficiencies of meromorphic functions of finite order	90		
4.3 The examples of Gol'dberg type	98		
4.4 Some results for functions of non-integral order	100		
4.5 Gol'dberg's theorems on the means of analytic functions	106		
4.6 Deficiencies of functions of genus zero	109		
4.7 Extension of a theorem of Wiman	119		
4.8 Conclusion	124		
AHLFORS'S THEORY OF COVERING SURFACES			
5.0 Introduction	125		
5.1 Geometric preliminaries	125		
5.2 Covering surfaces	130		
5.3 The first fundamental theorem	131		
5.4 The topology of surfaces	134		
5.5 A lower bound for the characteristic of a covering surface	137		
5.6 Application to functions meromorphic in a disk	143		
5.7 The principal results of the theory	148		
5.8 Conclusion	150		
FUNCTIONS MEROMORPHIC IN THE UNIT DISK			
6.0 Introduction	151		
6.1 The theory of Dufresnoy	151		
6.2 Consequences of Theorem 6.1	156		
6.3 Normal families	157		
6.4 Normal invariant families	162		
6.5 Normal invariant families of regular functions	165		
6.6 Theorems of Schottky, Landau, Bohr, and Bloch	169		
6.7 Functions of bounded characteristic	172		
BIBLIOGRAPHY			
AUTHOR INDEX	189		
INDEX OF TERMINOLOGY			