## CONTENTS

| Preface |                                                           | page ix |
|---------|-----------------------------------------------------------|---------|
|         | Chapter 1. INTRODUCTION                                   |         |
| 1       | The cluster set. Definition                               | 1       |
| 2       | Definition of a partial cluster set                       | 2       |
| 3       | Illustrations                                             | 3       |
| 4       | Theorems of Weierstrass and Painlevé                      | 4       |
| 5       | Proofs of the theorems of Painlevé and Besicovitch        | . 5     |
|         | The range and the asymptotic set                          |         |
| 6       | Definitions. Theorems of Picard, Cartwright and Iversen   | 7       |
| 7       | The notion of capacity                                    | 9       |
| 8       | Counter-example for non-isolated singularities            | 10      |
| 9       | Case of thin sets of non-isolated singularities           | 11      |
| 10      | Historical note and summary                               | 13      |
|         | Chapter 2. FUNCTIONS ANALYTIC IN A CIRCULAR DISC          |         |
|         | Theorems of Fatou and F. and M. Riesz                     |         |
| 1       | Introduction                                              | 17      |
| 2       | Fatou's theorem on radial limits                          | 17      |
| 3       | Lindelöf's theorem and Fatou's theorem for angular limits | 19      |
| 4       | Theorem of F. and M. Riesz                                | 21      |
| 5       | Existence theorems on radial limits                       | 22      |

## $Blaschke\ products$

| 6  | Product representation of a bounded function page                                      | 28         |
|----|----------------------------------------------------------------------------------------|------------|
| 7  | Boundary properties of Blaschke products                                               | 31         |
| 8  | Further properties of Blaschke products. A uniqueness theorem                          | 35         |
| 9  | Functions of bounded characteristic and functions omitting three values                | 38         |
| 10 | Proof that Fatou's theorem is best possible                                            | 43         |
|    | Chapter 3. TOPICS IN THE THEORY OF CONFORMAL MAPPING                                   |            |
| 1  | Introduction                                                                           | <b>4</b> 6 |
| 2  | Boundary correspondence under conformal mapping of a Jordan domain                     | 46         |
| 3  | The Riesz theorem on conformal mapping of a Jordan domain with a rectifiable boundary. | 49         |
| 4  | Measure of boundary sets under conformal enlargement of domain                         | 54         |
| 5  | Angular limits of univalent functions                                                  | 56         |
| 6  | Correspondence of sets of capacity zero under conformal mapping                        | 64         |
|    | Chapter 4. INTRINSIC PROPERTIES OF CLUSTER SETS                                        |            |
| 1  | Global cluster set, range and asymptotic set                                           | 66         |
| 2  | Existence theorems for global cluster sets                                             | 68         |
| 3  | Sets of maximum indetermination. Existence theorem for an arbitrary function           | 72         |

|   | CONTENTS                                                               | vii    |
|---|------------------------------------------------------------------------|--------|
| 4 | Maximality theorem for a continuous function p                         | age 75 |
| 5 | Maximality theorems for an arbitrary function                          | 78     |
| 6 | Symmetric maximality theorems on cluster sets of an arbitrary function | 81     |
| 7 | Bagemihl's theorem on ambiguous points of an arbitrary function        | 83     |
| 8 | Normal functions. More general classes of functions                    | 86     |
| 9 | Generalizations                                                        | 88     |
|   | Chapter 5. CLUSTER SETS OF FUNCTIONS ANALYTIC IN THE UNIT DISC         |        |
| l | The Iversen–Beurling theorem                                           | 89     |
| 2 | Extensions of the Schwarz reflexion principle                          | 94     |
| 3 | The Gross-Iversen theorem on exceptional values.<br>Generalizations    | 101    |
| 4 | Properties of functions of Seidel's class $U$                          | 107    |
| 5 | Scope of the foregoing theorems                                        | 109    |
| 6 | One-sided cluster-set theorems                                         | 110    |
|   | Chapter 6. BOUNDARY THEORY IN THE LARGE                                |        |
| 1 | Method of the inverse function                                         | 114    |
| 2 | The set $\Gamma(f)$ for bounded functions                              | 120    |
| 3 | Boundary theorems in the large                                         | 122    |
| 4 | Cluster sets on spiral paths                                           | 129    |
|   | Chapter 7. BOUNDARY THEORY IN THE SMALL                                |        |
| 1 | Introduction                                                           | 133    |
| 2 | The main theorem in the small                                          | 135    |

viii

## CONTENTS

## Chapter 8. FURTHER BOUNDARY PROPERTIES OF FUNCTIONS MEROMORPHIC IN THE DISC. CLASSIFICATION OF SINGULARITIES

| 1                | Introduction                                                       | page | 144 |
|------------------|--------------------------------------------------------------------|------|-----|
| 2                | Functions with angular limits. Theorems of Privalo and Plessner    |      | 145 |
| 3                | Radial cluster sets and uniqueness theorems                        |      | 149 |
| 4                | Classification and distribution of singularities on                | K    | 150 |
| 5                | Meier's analogue of Plessner's Theorem                             |      | 153 |
| 6                | A theorem on polynomial approximation                              |      | 155 |
| 7                | An existence theorem on curvilinear cluster sets                   |      | 162 |
| 8                | Some consequences of the existence theorem                         |      | 165 |
|                  | Chapter 9. PRIME ENDS                                              |      |     |
| 1                | Introduction                                                       |      | 167 |
| 2                | Definition of a prime end                                          |      | 168 |
| 3                | Preliminary lemmas                                                 |      | 171 |
| 4                | Correspondence of frontiers under conformal mapping                |      | 172 |
| 5                | Elementary properties of the space of prime ends                   |      | 173 |
| 6                | Alternative metrics and generalizations                            |      | 175 |
| 7                | Principal and subsidiary points                                    |      | 176 |
| 8                | The classification of prime ends                                   |      | 180 |
| 9                | The distribution of the subsets $\mathscr{E}_{p}$ in $\mathscr{E}$ |      | 182 |
| 10               | A domain having a bi-connected set of accessible points            |      | 185 |
| 11               | The set of asymmetrical prime ends                                 |      | 188 |
|                  | •                                                                  |      |     |
| Bibliography     |                                                                    |      | 190 |
| Index of symbols |                                                                    | :    | 207 |
| Index            |                                                                    |      | 209 |