Contents

Introduction	
CHAPTER I. The Characteristic and Counting Functions	5
§1. The counting function	5
1. Computation of volumes in \mathbb{C}^m	5
2. The homogeneous metric form	11
3. Multiplicity of analytic sets	15
4. The counting function	20
5. The Poincaré form	27
§2. The characteristic function	29
6. Divisors	30
7. Line bundles	31
8. Hermitian bundles	36
9. The characteristic function	37
10. Higher characteristic functions	42
§3. Currents and some of their applications	47
11. Currents	47
12. The Poincaré-Lelong formula	51
13. The relation between characteristic and counting functions	56
CHAPTER II. The Main Theorems of Value Distribution Theory	61
§4. First main theorem	61
1. The case of divisors	61
2. First applications	65
3. The case of sets of codimension greater than 1	68
4. On the Nevanlinna inequality for codimensions greater than 1	70
5. Sokhotskii's theorem for codimensions greater than 1	73
§5. Second main theorem	7 6
6. Singular volume form	76
7. Preliminary formulation	81
8. Main formulation	85

iv CONTENTS

§6. Picard's theorem. Defect relation	89
9. Picard's theorem	89
10. Examples	90
11. Defect relation	92
12. Example	96
CHAPTER III. Holomorphic Curves	99
§7. Associated curves	99
1. Holomorphic curves and their representation	99
2. Grassmann algebra	101
3. Associated curves	103
§8. Characteristic functions	106
4. Metric forms	106
5. Characteristic functions	110
6. The case of entire curves	112
§9. Second main theorem	113
7. Contact functions	114
8. Two relations	116
9. Second main theorem	120
§10. Defect relation and Picard's theorem	125
10. Defect relation and Borel's theorem	1 2 5
11. Big Picard theorem	128
12. More theorems of Picard type	132
CHAPTER IV. Generalization of the Main Theorems	137
§11. Mappings of complex manifolds	137
1. Exhaustion functions	137
2. Generalization of the main theorems	140
3. The case of holomorphic curves	144
4. The hyperbolic case	151
§12. Divisors with singularities	152
5. Quadratic transformation	152
6. Singularities of intersection	160
7. Arbitrary singularities	164
CHAPTER V. Further Results	169
§13. Results using capacity	169
1. P-measure	169
2. P-capacity	174
3. Polarity of the set of defective divisors	177
4. On the Bézout problem	181

CONTENTS	v	,

§14. Mappings of finite order	185
5. Estimates of characteristic functions from above	186
6. Mappings with q -regular growth	189
7. Complex variations	196
8. Applications and examples	200
SUPPLEMENT. A Brief Survey of Other Work	205
Bibliography	213