TABLE OF CONTENTS

Preface vii

Chapter 1. Introduction 1

1.1. Brief description of new results and the aims of the book 1

1.2. Review of some applications of the Radon transform 6

1.2.1. Applications in medicine and non-destructive evaluation 6

1.2.2. Applications in geophysics 8

Chapter 2. Properties of the Radon transform and inversion formulas 11

2.1. Definitions and properties of the Radon transform and related transforms 11

2.1.1. Definition of the Radon transform 11

2.1.2. Some generalizations 13

2.1.3. Simple properties of the Radon transform 13

2.1.4. Radon transform of a convolution 14

2.1.5. The Fourier slice theorem 15

2.1.6. The adjoint operator R^* 16

2.1.7. Formulas for R^*R and RR^* 17

2.1.8. Formula for $(R^*g) * f$ 20

2.1.9. The Parseval and Plancherel equalities 20

2.1.10. Integrals over a domain 23

2.1.11. Consistency and moment conditions 23

2.1.12. The Radon transform of spherically symmetric functions 25

2.1.13. Concluding remarks 26

2.2. Inversion formulas for R 26

2.2.1. The first method 26

2.2.2. The second method 28
2.2.3. Inversion in two- and three-dimensional spaces 31
2.2.4. Radon's original inversion formula 32
2.2.5. Inversion via the spherical harmonics series 33
2.2.6. Inversion in the spherically symmetric case 35

2.3. Singular value decomposition of the Radon transform 35

2.4. Estimates in Sobolev spaces 41

2.5. Inversion formulas for the backprojection operator 45
 2.5.1. Motivation and problem formulation 45
 2.5.2. Inversion formulas 45

2.6. Inversion formulas for X-ray transform 48
 2.6.1. Definition of X^* and a formula for X^*X 48
 2.6.2. Inversion formula for X-ray transform 50

2.7. Uniqueness theorems for the Radon and X-ray transforms 52
 2.7.1. Uniqueness theorems for the Radon transform 52
 2.7.2. Uniqueness theorems for X-ray transform 54
 2.7.3. Example of the lack of injectivity 55

2.8. Attenuated and exponential Radon transforms 57
 2.8.1. Simplest properties 57
 2.8.2. Inversion formulas 59
 2.8.3. Generalized Radon transform 63

2.9. Convergence properties of the inversion formulas on various classes of functions 64

Chapter 3. Range Theorems and reconstruction algorithms 67

3.1. Range theorems for R on smooth functions 67
 3.1.1. The classical range theorem 67
 3.1.2. What happens if the moment conditions are violated? 70

3.2. Range theorem for R on the Sobolev spaces 76
 3.2.1. Introduction 76
 3.2.2. Proof of Theorem 3.2.1 77
 3.2.3. The range theorem in terms of the Fourier coefficients 79

3.3. Range theorems for R^* 81
TABLE OF CONTENTS

3.4. Range theorem for X-ray transform 84
3.5. Numerical solution of the equation \(Rf = g \)
 with noisy data 86
 3.5.1. Introduction 86
 3.5.2. Regularization 1 87
 3.5.3. Regularization 2 89
 3.5.4. Regularization 3 90
3.6. Filtered backprojection algorithm 91
 3.6.1. Derivation of the algorithm 91
 3.6.2. The parallel beam protocol 92
 3.6.3. The fan beam protocol 92
3.7. Other reconstruction algorithms 95
 3.7.1. Fourier algorithm 95
 3.7.2. Algebraic reconstruction algorithms 96

Chapter 4. Singularities of the Radon transform 98
4.1. Introduction 98
4.2. Singular support of the Radon transform 99
4.3. The relation between \(S \) and \(\hat{S} \) 100
4.4. The envelopes and the duality law 103
4.5. Asymptotics of \(Rf \) near \(S \) 104
4.6. Singularities of the Radon transform: an
 alternative approach 112
4.7. Asymptotics of the Fourier transform 116
 4.7.1. Introduction 116
 4.7.2. Statement and proof of the result 116
4.8. Wave front sets 120
4.9. Singularities of X-ray transform 121
 4.9.1 Introduction 121
 4.9.2. Description of the procedure 121
4.10. Stable calculation of the Legendre transform 124
 4.10.1. Introduction 124
 4.10.2. The Legendre transform 124
 4.10.3. Calculation of the generalized
 Legendre transform 129
 4.10.4. A sufficient condition for (4.10.2) 133

Chapter 5. Local Tomography 134
5.1. Introduction 134
5.2. A family of local tomography functions 135
 5.2.1. Definition of a family. Basic property 135
 5.2.2. An elementary proof of the relation
 \(WF(f) = WF(\psi) \) 138
5.3. Optimization of noise stability 139
5.4. Algorithm for finding values of jumps of a function using local tomography
5.4.1. Derivation of the algorithm. Basic result 142
5.4.2. Proof of Theorem 5.4.1 in case of the locally flat S 144
5.4.3. Proof of Theorem 5.4.1 in case of the convex S 149

5.5. Numerical implementation 153
5.5.1. The first numerical scheme for computing values of jumps 153
5.5.2. The second numerical scheme for computing values of jumps 157

5.6. Local tomography for the exponential Radon transform 161

5.7. Local tomography for the generalized Radon transform
5.7.1. The first approach 165
5.7.2. The second approach 168
5.7.3. Remarks on numerical implementation 169

5.8. Local tomography for the limited-angle data 173

5.9. Asymptotics of pseudodifferential operators, acting on a piecewise-smooth function f, near the singular support of f
5.9.1. The case of a convex boundary 177
5.9.2. The case of a flat boundary 184
5.9.3. Further generalizations 187
5.9.4. Asymptotics of PDO, symbols of which have discontinuities on a conical surface 191
5.9.5. Proof of the auxiliary results 199

Chapter 6. **Pseudolocal Tomography** 206

6.1. Introduction 206

6.2. Definition of a pseudolocal tomography function. Basic property 207

6.3. Investigation of the convergence $f^c_\rho(x) \rightarrow f(x)$ as $\rho \rightarrow 0$ 209

6.4. More results on functions f^c_ρ, f_ρ, and on convergence $f^c_\rho \rightarrow f$ 217

6.5. A family of pseudolocal tomography functions 221
6.5.1. Definition of a family. Basic property 221
6.5.2. Relation between pseudolocal and local tomography functions 223
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.3.</td>
<td>Proof of auxiliary results</td>
<td>226</td>
</tr>
<tr>
<td>6.6.</td>
<td>Numerical implementation of pseudolocal tomography</td>
<td>228</td>
</tr>
<tr>
<td>6.7.</td>
<td>Pseudolocal tomography for the exponential Radon transform</td>
<td>231</td>
</tr>
<tr>
<td>6.7.1.</td>
<td>Definitions. Basic property</td>
<td>231</td>
</tr>
<tr>
<td>6.7.2.</td>
<td>Some auxiliary results</td>
<td>235</td>
</tr>
<tr>
<td>6.7.3.</td>
<td>Investigation of the convergence $f_\rho(x) \rightarrow f(x)$ as $\rho \rightarrow 0$</td>
<td>238</td>
</tr>
<tr>
<td>6.7.4.</td>
<td>Remarks on numerical implementation</td>
<td>243</td>
</tr>
<tr>
<td>6.7.5.</td>
<td>Proofs of Lemmas 6.7.2 – 6.7.4</td>
<td>244</td>
</tr>
<tr>
<td>Chapter 7.</td>
<td>Geometrical tomography</td>
<td>248</td>
</tr>
<tr>
<td>7.1.</td>
<td>Basic idea</td>
<td>248</td>
</tr>
<tr>
<td>7.2.</td>
<td>Description of the algorithm and numerical experiments</td>
<td>250</td>
</tr>
<tr>
<td>Chapter 8.</td>
<td>Inversion of incomplete tomographic data</td>
<td>259</td>
</tr>
<tr>
<td>8.1.</td>
<td>Inversion of incomplete Fourier transform data</td>
<td>259</td>
</tr>
<tr>
<td>8.1.1.</td>
<td>The basic result</td>
<td>259</td>
</tr>
<tr>
<td>8.1.2.</td>
<td>Numerical aspects</td>
<td>264</td>
</tr>
<tr>
<td>8.2.</td>
<td>Filtered backprojection method for inversion of the limited-angle tomographic data</td>
<td>265</td>
</tr>
<tr>
<td>8.3.</td>
<td>The extrapolation problem</td>
<td>267</td>
</tr>
<tr>
<td>8.3.1.</td>
<td>Formulation of the problem</td>
<td>267</td>
</tr>
<tr>
<td>8.3.2.</td>
<td>The first method of solution</td>
<td>268</td>
</tr>
<tr>
<td>8.3.3.</td>
<td>The second method of solution</td>
<td>269</td>
</tr>
<tr>
<td>8.3.4.</td>
<td>The third method of solution</td>
<td>270</td>
</tr>
<tr>
<td>8.4.</td>
<td>The Davison-Grünbaum algorithm</td>
<td>273</td>
</tr>
<tr>
<td>Chapter 9.</td>
<td>Inversion of cone-beam data</td>
<td>276</td>
</tr>
<tr>
<td>9.1.</td>
<td>Inversion of the complete cone-beam data</td>
<td>276</td>
</tr>
<tr>
<td>9.2.</td>
<td>Inversion of incomplete cone-beam data</td>
<td>280</td>
</tr>
<tr>
<td>9.3.</td>
<td>An exact algorithm for the cone-beam circle geometry</td>
<td>284</td>
</tr>
<tr>
<td>9.3.1.</td>
<td>Reconstruction algorithm</td>
<td>284</td>
</tr>
<tr>
<td>9.3.2.</td>
<td>Geometry of the fan-beam data</td>
<td>287</td>
</tr>
<tr>
<td>9.4.</td>
<td>γ-ray tomography</td>
<td>289</td>
</tr>
<tr>
<td>9.4.1.</td>
<td>Brief description of three different protocols</td>
<td>289</td>
</tr>
<tr>
<td>9.4.2.</td>
<td>Uniqueness results and inversion formulas for Problems 9.4.1 and 9.4.2</td>
<td>292</td>
</tr>
<tr>
<td>9.4.3.</td>
<td>Investigation of Problem 9.4.3</td>
<td>293</td>
</tr>
</tbody>
</table>
9.4.4. Sufficient condition for a linear operator to be a convolution 301

Chapter 10. Radon transform of distributions 303
10.1. Main definitions 303
10.2. Properties of the test function spaces 307
10.3. Examples 309
10.4. Range theorem for the Radon transform on E' 313
10.5. A definition based on spherical harmonics expansion 315
10.6. When does the Radon transform on distributions coincide with the classical Radon transform? 318
10.7. The dual Radon transform on distributions 319
10.7.1. Definition of R^* on certain classes of distributions 319
10.7.2. Singularities and singular support of the solution to the equation $R^* \mu = h$ 321

Chapter 11. Abel-type integral equation 325
11.1. The classical Abel equation 325
11.2. Abel-type equations 326
11.3. Reduction of Equation (2.2.42) to a more stable one 328
11.4. Finding locations and values of jumps of the solution to the Abel equation 330

Chapter 12. Multidimensional algorithm for finding discontinuities of signals from noisy discrete data 335
12.1. Introduction 335
12.2. Edge detection algorithm 337
12.3. Thin line detection algorithm 338
12.4. Generalization of the algorithms 341
12.5. Justification of the edge detection algorithm 343
12.6. Justification of the algorithm for thin line detection 349
12.7. Justification of the general scheme 351
12.8. Numerical experiments 352
12.9. Proof of auxiliary results 355

Chapter 13. Test of randomness and its applications 361
13.1. Introduction 361
13.2. Consistency of rank test against change points (change surfaces) alternative 363
TABLE OF CONTENTS

13.2.1. One-dimensional case, \(m = 2 \) 363
13.2.2. One-dimensional case, \(m > 2 \) 368
13.2.3. Multidimensional case, fixed design model 371
13.2.4. Random design model 373
13.2.5. Numerical experiments 377

13.3. Consistency of rank test against trend in location 377
13.3.1. One-dimensional case, equispaced design model 377
13.3.2. Multidimensional case, regular design model 386
13.3.3. Random design model 387

Chapter 14. Auxiliary Results 390

14.1. Abstract and functional spaces 390
14.1.1. Abstract spaces 390
14.1.2. Lebesgue and Sobolev spaces 391

14.2. Distribution theory 394
14.2.1. Spaces of test functions and distributions 394
14.2.2. Fourier transform of distributions 397
14.2.3. Wave front of a distribution 400

14.3. Pseudodifferential and Fourier integral operators 400
14.3.1. Oscillatory integrals 400
14.3.2. Fourier integral operators 401
14.3.3. Pseudodifferential operators 402

14.4. Special functions 405
14.4.1. Gamma and beta functions 405
14.4.2. Bessel functions 406
14.4.3. Orthogonal polynomials 408
14.4.4. Integration over spheres 411
14.4.5. Spherical harmonics 412
14.4.6. The Hankel transform and the Fourier transform 414

14.5. Asymptotic expansions 415
14.5.1. Definitions 415
14.5.2. Laplace’s method 417
14.5.3. The stationary phase method 419
14.5.4. The Morse lemma 422

14.6. Linear equations in Banach spaces 423
14.6.2. Conditions for surjectivity 424
14.6.3. Compact operators 425
TABLE OF CONTENTS

14.6.4. Resolution of the identity 427
14.7. Ill-posed problems 428
 14.7.1. Basic definitions 428
 14.7.2. Examples of ill-posed problems 429
 14.7.3. Methods for stable solution of ill-posed problems 430
 14.7.4. Asymptotics of singular values of the Radon transform 434
14.8. Examples of regularization of ill-posed problems 437
 14.8.1. Stable differentiation 437
 14.8.2. Stable summation of the Fourier series 440
14.9. Radon transform and PDE 441
 14.9.1. Fundamental solutions of elliptic equations 441
 14.9.2. Fundamental solution of the Cauchy problem 444
 14.9.3. Proof of identity (14.9.2) 444
14.10. Statistics 445
 14.10.1. Random variables and some of their basic properties 445
 14.10.2. Modes of convergence and limit theorems 447
 14.10.3. Hypothesis testing 449
 14.10.4. Randomness and deviations from it, ranks, rank tests, order statistics 450
 14.10.5. The Monte Carlo method 453
 14.10.6. Image processing 454

Research Problems 456

Bibliographical notes 458

References 464

List of notations 476

Index 480