CONTENTS

Foreword.		хi
Publications of Thomas Murray	MacRobert.	xv
Chapter I. Fourier Series.		
§ 1 Fourier's Expansion.		1
§ 2 Validity of the Expansion.		5
§ 3 Dirichlet's Integrals.		6
§ 4 Summation of the Fourier Se		9
§ 5 Sine Series and Cosine Series		11
§ 6 Other Forms of Fourier Serie	es.	12
§ 7 Fourier's Double Integral.		15
Examples.		19
Chapter II. Conduction of Heat.		22
§ 1 Definitions.		22
§ 2 Flow of Heat across any Sur	face.	24
§ 3 The Equation of Conduction	1.	25
§ 4 Initial and Boundary Condit	ions.	27
§ 5 Uniqueness of the Solution.		29
§ 6 Infinite Slab with Parallel Fa		30
§ 7 Radiation at the Surface of a	a Rod of Small Cross-section.	32
§ 8 Fourier's Ring.		34
§ 9 Duhamel's Theorem.		36
§ 10 Finite Rod with Variable En	d Temperatures.	37
§ 11 Steady Temperature in an In	nfinite Rectangular Solid.	39
§ 12 Rectangular Parallelepiped:	Steady Temperature.	40
§ 13 Rectangular Parallelepiped:		42
§ 14 Infinite Rod: No Radiation.		. 44
§ 15 Infinite Solid.		45
Examples.		47
Chapter III. Transverse Vibration	ns of Stretched Strings.	49
§ 1 The Differential Equation.		49
§ 2 Solutions of the Equation.		52
§ 3 Normal Modes of a Finite	String.	53
§ 4 Vibrations of a Harp String	g.	56
§ 5 Vibrations of a Violin Strir	ng.	58
§ 6 Vibrations of a Piano Strin	g.	61
§ 7 Vibrations of Membranes.		64

١

vi CONTENTS

C	hap	nter IV. Spherical Harmonics: The Hypergeometric Function.	67
§	1	The Potential Function.	67
§	2	The Legendre Coefficients.	67
§		Laplace's Coefficients.	68
§		Spherical Harmonics.	69
§		Legendre's Equation.	71
§		Legendre's Associated Equation.	71
ş		The Hypergeometric Function.	72
ş Ş		The Hypergeometric Equation.	72
ş Ş		The Four Forms of the Hypergeometric Function.	74
8	10	The Asymptotic Expansion of the Hypergeometric Function.	75
8	11	Formulae for the Gamma Function and other Functions.	76
			78
E	xaı	nples.	70
C	hap	oter V. The Legendre Polynomials.	79
§	1	Legendre's Expansion.	79
§	2	Expansion of $P_n(\mu)$ in Powers of μ .	80
§		Expansion of $P_n(\mu)$ in Powers of $\frac{1}{2}(1-\mu)$.	81
§		Rodrigues' Formula.	82
§		The Zeros of $P_n(\mu)$.	84
§		Integrals of Products of Legendre Polynomials.	85
§		Expression of a Polynomial as a Linear Function of Legendre	
3	•	Polynomials.	88
8	8	The Recurrence Formulae.	91
		Laplace's First Integral.	93
		Laplace's Second Integral.	94
-		Expansion of a Function in a Series of Legendre Polynomials.	95
		responsion of a Function in a series of Degendre Polynomials.	96
		·	101
_		oter VI. The Legendre Functions.	101
§		Legendre Functions of the Second Kind.	101
		Legendre Functions of the First Kind.	
		The Recurrence Formulae for $P_n(x)$.	104
§		The Recurrence Formulae for $Q_n(x)$.	105
		Theorem.	107
E	xar	mples.	108
C	'haį	oter VII. The Associated Legendre Functions of Integral Order.	113
§	1	Solution of Legendre's Associated Equation.	113
§		Relations between the Associated Legendre Functions.	115
§		Ferrers' Associated Legendre Function of the First Kind.	116
ş		Integrals of Products of Associated Legendre Functions.	117
Ş		Laplace's First Integral for $P_n^m(x)$.	118
ş		Laplace's Second Integral for $P_n^{-m}(x)$.	120
Ş		Spherical Harmonics of Integral Degree.	121
§		Expression of a Surface Spherical Harmonic of Integral degree in	
3	9	terms of Zonal, Tesseral and Sectorial Harmonics.	124

CONTENTS	vii
§ 9 Integrals of Products of Surface Spherical Harmonics.	125
§ 10 The Laplace Coefficients.	126
§ 11 The Addition Theorem for the Zonal Harmonics. § 12 Expansion of a rational integral function of $\cos \theta$, $\sin \theta \cos \phi$,	127
$\sin \theta \sin \phi$, in terms of Surface Spherical Harmonics. § 13 Expansion of an Arbitrary Function of θ and ϕ in a Series of Spher-	128
ical Harmonics.	131
Examples.	132
Chapter VIII. Applications of Legendre Coefficients to Potential Theory.	134
§ 1 The Newtonian Law of Attraction.	134
§ 2 The Potential.	135
§ 3 Some Properties of the Potential.	136
§ 4 Expression for the Potential in terms of Spherical Harmonics.	138
§ 5 Potential of a Thin Uniform Wire bent into the form of a Circle.	140
§ 6 Attraction of a Uniform Circular Lamina.	142
§ 7 Potentials of a Magnet and of a Magnetic Shell.	144
Chapter IX. Potentials of Spherical Shells, Spheres and Spheroids.	146
§ 1 General Theorems on the Potential.	146
§ 2 Potential of a Thin Spherical Shell of Given Surface Density.	147
§ 3 Potential of a Thin Spherical Shell when the Value of the Potential	149
on the Surface is given.	150
§ 4 A Theorem on Inverse Points.	151
§ 5 Poisson's Integrals.	151
§ 6 Potential of a Thick Spherical Shell when the Density is given.	155
§ 7 Equivalent Distributions of Masses.	155
§ 8 The First Boundary Problem for the Sphere.	157
§ 9 The Second Boundary Problem for the Sphere.	159
§ 10 Potential of a Homogeneous Spheroid.	162
§ 11 Potential of a Heterogeneous Spheroid.	102
Chapter X. Applications to Electrostatics.	165
§ 1 Distribution of Electricity in a Conductor in Electrical Equilibrium.	165
§ 2 Distribution of Electricity on an Insulated Conducting Sphere.	165
§ 3 Insulated Sphere and External Point-charge.	167
§ 4 Distribution of Electricity on an Uninsulated Conducting Sphere.	170
§ 5 Uninsulated Sphere and External Point-charge.	170
§ 6 The Green's Function.	171
§ 7 Thick Spherical Conducting Shell under the Influence of External	
Electrical Forces.	173
§ 8 Thick Spherical Conducting Shell under the Influence of Internal	
Electrical Forces.	174
§ 9 Insulated Conducting Spheroid.	170

viii CONTENTS

Chapter XI. Ellipsoids of Revolution.	179
§ 1 Transformation of Laplace's and Poisson's Equations to an Ortho-	
gonal System of Curvilinear Co-ordinates.	179
§ 2 Prolate Ellipsoids of Revolution.	182
§ 3 Laplace's Equation in Elliptic Co-ordinates.	183
§ 4 Expression for the Reciprocal of the Distance between two Points	100
in Elliptic Co-ordinates.	188
§ 5 Oblate Ellipsoids of Revolution.	194 195
 § 6 Transformation and Solution of Laplace's Equations. § 7 Expression for the Reciprocal of the Distance between two Points. 	198
§ 7 Expression for the Reciprocal of the Distance between two Points.	170
Chapter XII. Eccentric Spheres.	201
§ 1 Dipolar Co-ordinates in Two Dimensions.	201
§ 2 Dipolar Co-ordinates in Three Dimensions.	203
§ 3 The Problem of Two Eccentric Spheres.	204
§ 4 Solution of Laplace's Equation.	207
§ 5 Ring Surfaces.	209
Chapter XIII. Clerk Maxwell's Theory of Spherical Harmonics.	212
§ 1 Theorem.	212
§ 2 Poles of a Spherical Harmonic.	215
§ 3 Poles of Zonal, Tesseral and Sectorial Harmonics.	218
Chapter XIV. Bessel Functions.	221
§ 1 Bessel's Equation.	221
§ 2 Solution of the Differential Equation.	222
§ 3 Recurrence Formulae for $J_n(x)$.	228
§ 4 Expressions for $J_n(x)$ when n is half an odd integer.	229
§ 5 The Bessel Coefficients.	229
§ 6 Expansion of x^n in a Series of Bessel Functions.	232
§ 7 Definite Integral Expressions for the Bessel Functions.	233
§ 8 The Function $G_n(x)$.	235
§ 9 Relations between the Bessel Functions.	238
§ 10 Addition Theorems for Y_n and G_n .	238
Examples.	240
Chapter XV. Asymptotic Expansions and Fourier-Bessel Expansions.	243
§ 1 Additional Definite Integral Expressions for the Bessel Functions.	243
§ 2 The Modified Bessel Functions I_n and K_n .	247
§ 3 The Asymptotic Expansions.	250
§ 4 Lommel Integrals.	253
§ 5 Zeros of the Bessel Functions.	255
§ 6 The Fourier-Bessel Expansions.	260
Examples.	262

CONTENTS	ix

Chapter XVI. Applications of Bessel Functions.	263
§ 1 Vibrations of a Circular Membrane.	263
§ 2 Flow of Heat in a Circular Cylinder.	265
§ 3 Flow of Heat in a Sphere.	268
Examples.	271
Chapter XVII. The Hypergeometric Function.	274
§ 1 The Hypergeometric Equation.	274
§ 2 Gauss's Theorem.	275
§ 3 The Four Forms of the Hypergeometric Function.	278
§ 4 Relations between the Integrals of the Hypergeometric Equation.	280
§ 5 The Asymptotic Expansion.	283
§ 6 Generalised Hypergeometric Functions.	284
§ 7 Kummer's Function.	286
Chapter XVIII. Associated Legendre Functions of General Order.	288
§ 1 Solution of Legendre's Associated Equation.	288
§ 2 Relations between the Integrals of Legendre's Associated Equation.	290
§ 3 The Asymptotic Expansions.	294
§ 4 The Mehler-Dirichlet Integral.	297
§ 5 Dougall's Formulae.	299
§ 6 The Addition Theorem.	301
§ 7 Recurrence Formulae.	302
§ 8 Functions of the First kind when the sum of the Degree and the	
Order is a Positive Integer.	305
§ 9 Expansion of a function in a series of associated Legendre func-	
tions.	308
§ 10 Related Formulae for the Bessel and Legendre Functions.	311
Examples.	314
Miscellaneous Examples.	317
Selected Bibliography.	339
Index.	341
Other Titles in the Series.	347