CONTENTS Preface | Preface | vii | |---|--| | Contents of Volume I | xv | | Introduction | xv ii | | IX. Expansions of Generalized Hypergeometric Functions in Series of Functions of the Same Kind | | | 9.1. Expansions of _pF_q's in Series of Other _pF_q's 9.2. Expansions of G-Functions in Series of G-Functions 9.3. Expansions in Series of Jacobi and Chebyshev Polynomials 9.4. Expansions in Series of Bessel Functions 9.5. Miscellaneous Expansions | 1
14
28
44
62 | | X. The τ-Method | | | 10.1. Differential Equations 10.2. The Exponential Function 10.3. The Padé Table 10.4. Padé Approximations to the Solution of the First Order Riccati Equation 10.5. Padé Approximations to the Solution of a Generalized Second Order Riccati Equation | 66
69
75
77
86 | | XI. Polynomial and Rational Approximations to Generalized Hypergeometric Functions | | | 11.1. Introduction 11.2. Polynomial and Rational Approximations for the $_pF_q$ 11.3. Analysis of the Error 11.4. Polynomial and Rational Approximations for a Laplace Integral 11.5. Polynomial and Rational Approximations for Whittaker and Bessel Functions 11.6. Polynomial and Rational Approximations for Lommel and Struve Functions 11.7. Polynomial and Rational Approximations for a Certain Class of G -Functions | 92
93
98
106
111
116
118 | xii CONTENTS | XII. Recursion Formulas for Polynomials and Functions Which Occur in Infinite Series and Rational Approximations to Generalized Hypergeometric Functions | | |--|---| | 10.1. Turned and an | 133 | | 12.1. Introduction 12.2. Recursion Formulas for the Extended Jacobi and Laguerre Functions | 134 | | 12.2. Recursion Formula for the Numerator Polynomial in the Rational Approxima- | 13. | | tion for the Generalized Hypergeometric Function | 148 | | 12.4. Recursion Formula for Coefficients in the Expansion of the G-Function in | | | Series of Extended Jacobi Polynomials | 153 | | 12.5. Computation by Use of Recurrence Formulas | 159 | | XIII. Polynomial and Rational Approximations for $E(z) = {}_2F_1(1, \sigma; \rho + 1; -1/z)$ | | | 12.1. D. L J. Davis and Amenovimentions | 167 | | 13.1. Polynomial and Rational Approximations | 169 | | 13.2. Padé Approximations 13.3. Inequalities for $E(z)$, $z > 0$ | 173 | | 13.4. Continued Fractions | 173 | | 13.5. Approximations for $E(1/z)$ | 175 | | 13.6. The Incomplete Beta Function | 178 | | 13.7. The Binomial Function | 179 | | XIV. Polynomial and Rational Approximations for the Incomplete Gamma Function | | | 14.1. Introduction | 186 | | 14.2. Padé Approximations for the Ascending Series | 189 | | 14.3. Inequalities for the Ascending Series | 194 | | 14.4. Continued Fractions for the Ascending Series | 196 | | | | | 14.5. The Exponential Integral and Related Integrals | 196 | | | 196
198 | | 14.5. The Exponential Integral and Related Integrals
14.6. Padé Approximations for $\Gamma(\nu, z)$
14.7. Inequalities for $\Gamma(\nu, z)$ | 196
198
201 | | 14.5. The Exponential Integral and Related Integrals 14.6. Padé Approximations for Γ(ν, z) 14.7. Inequalities for Γ(ν, z) 14.8. Continued Fractions for Γ(ν, z) | 196
198 | | 14.5. The Exponential Integral and Related Integrals
14.6. Padé Approximations for $\Gamma(\nu, z)$
14.7. Inequalities for $\Gamma(\nu, z)$ | 196
198
201 | | 14.5. The Exponential Integral and Related Integrals 14.6. Padé Approximations for Γ(ν, z) 14.7. Inequalities for Γ(ν, z) 14.8. Continued Fractions for Γ(ν, z) 14.9. Uniform Asymptotic Representation for the Error in the Padé Approxima- | 196
198
201
202 | | 14.5. The Exponential Integral and Related Integrals 14.6. Padé Approximations for Γ(ν, z) 14.7. Inequalities for Γ(ν, z) 14.8. Continued Fractions for Γ(ν, z) 14.9. Uniform Asymptotic Representation for the Error in the Padé Approximations to Γ(ν, z) | 196
198
201
202 | | 14.5. The Exponential Integral and Related Integrals 14.6. Padé Approximations for Γ(ν, z) 14.7. Inequalities for Γ(ν, z) 14.8. Continued Fractions for Γ(ν, z) 14.9. Uniform Asymptotic Representation for the Error in the Padé Approximations to Γ(ν, z) XV. Trapezoidal Rule Integration Formulas | 196
198
201
202
202 | | 14.5. The Exponential Integral and Related Integrals 14.6. Padé Approximations for Γ(ν, z) 14.7. Inequalities for Γ(ν, z) 14.8. Continued Fractions for Γ(ν, z) 14.9. Uniform Asymptotic Representation for the Error in the Padé Approximations to Γ(ν, z) XV. Trapezoidal Rule Integration Formulas 15.1. Introduction | 196
198
201
202
202
214
215
218 | | 14.5. The Exponential Integral and Related Integrals 14.6. Padé Approximations for Γ(ν, z) 14.7. Inequalities for Γ(ν, z) 14.8. Continued Fractions for Γ(ν, z) 14.9. Uniform Asymptotic Representation for the Error in the Padé Approximations to Γ(ν, z) XV. Trapezoidal Rule Integration Formulas 15.1. Introduction 15.2. Theoretical Development 15.3. Example I. Bessel Functions of the First Kind of Order n 15.4. Example II. The Complete Elliptic Integrals | 196
198
201
202
202
214
215
218
220 | | 14.5. The Exponential Integral and Related Integrals 14.6. Padé Approximations for Γ(ν, z) 14.7. Inequalities for Γ(ν, z) 14.8. Continued Fractions for Γ(ν, z) 14.9. Uniform Asymptotic Representation for the Error in the Padé Approximations to Γ(ν, z) XV. Trapezoidal Rule Integration Formulas 15.1. Introduction 15.2. Theoretical Development 15.3. Example I. Bessel Functions of the First Kind of Order n | 196
198
201
202
202
214
215
218 | | CONTENTS xii | i | |--------------|---| |--------------|---| 468 | 271. Applications | | |--|------| | 16.1. Zeros of Functions | 227 | | 16.2. Solution of Differential Equations in Series of Chebyshev Polynomials of the | | | First Kind | 234 | | 16.3. Orthogonal Polynomials, Numerical Integration, and the Inversion of Laplace | | | Transforms | 243 | | 16.4. Inversion of Laplace Transforms by Use of Rational Approximations | 255 | | 16.5. Approximations for Elliptic Integrals | 269 | | 16.6. Approximations for the Debye Functions | 273 | | | | | XVII. Tables of Coefficients | | | 17.1. Introduction | 282 | | 17.2. Computation and Check of the Tables | 282 | | 17.3. Other Coefficients | 285 | | 17.4. Tables of Coefficients | 292 | | DULU | 4.5. | | Bibliography | 453 | | Notation Index | 463 | Subject Index to Volumes I and II