CONTENTS

PKE	FACE	v
GEN	ERAL INTRODUCTION by Eugene P. Wigner	xi
СНА	PTER 1. INTRODUCTION	1
СНА	PTER 2. ABSTRACT GROUPS	4
2.1	Abstract groups	5
2.2	Subgroups and factor groups	7
2.3	Homomorphisms	9
2.4	Some further aspects of groups	10
СНА	PTER 3. LIE GROUPS	13
3.1	Lie groups	14
3.2	Compact groups	17
3.3	Locally isomorphic groups	18
3.4	Properties of the product functions	18
3.5	One-parameter subgroups	20
3.6	Canonical coordinates	23
3.7	One-parameter subgroups of matrix groups	26
CHAPTER 4. LIE ALGEBRAS		27
4.1	Abstract definition of a Lie algebra	27
4.2	Lie algebra of a matrix group	30
4.3	An example	32
4.4	The Jacobi identity	34

viii		Contents
4.5	Subalgebras and factor algebras	36
4.6	Relations between Lie groups and their algebras	39
4.7	Some important Lie algebras	41
4.8	Lie algebras of dimension 1, 2, and 3	43
CHAI	PTER 5. INVARIANT INTEGRATION	50
5.1	Integration on a finite group	50
5.2	Integration on a compact Lie group. The Hurwitz integral	51
5.3	Right invariant integration	57
CHAI	PTER 6. GROUP REPRESENTATIONS	61
6.1	Group representations	62
6.2	Unitary representations	65
6.3	Reducibility of representations	67
6.4	Examples of representations	70
6.5	Schur's Lemma	71
6.6	Orthogonality properties of irreducible representations	73
6.7	Group characters	76
6.8	Direct product of representations	78
6.9	Representations in function spaces	80
6.10	Representations of Lie algebras	83
СНАН	PTER 7. COMPLETENESS THEOREMS FOR GROUP	
	REPRESENTATIONS	89
7.1	Completeness theorems for finite groups	89
7.2	The Peter-Weyl theorem	92
7.3	Infinite-dimensional representations of a compact Lie group	102
CHAI	TER 8. THE GROUPS U(1) AND SU(2)	108
8.1	Rotation in the plane	108
8.2	Representations of the group SU(2)	110
8.3	Reduction of the direct product of irreducible representatio	
8.4	Symmetry and other properties of the 3-j coefficients	121
8.5	Special 3-j coefficients	123
8.6	Reduction of a threefold product	124
СНАН	TER 9. ROTATIONS IN SPACE	130
9.1	General properties of the rotation group	130
9.2	The functions of v^{α}_{β} and invariant integration	137
9.3	The homomorphisms of $SU(2)$ onto $O(3)^+$	140

Conte	nts	ix
9.4	Representations of the rotation group	143
9.5	Harmonic polynomials and representations of O(3)+	146
9.6	Differential equations for the group representations	151
9.7	Properties of the functions d_{mn}^{l}	157
9.8	Properties of spherical harmonics	164
CHAI	PTER 10. ROTATION IN FOUR DIMENSIONS	169
10.1	The Lie algebra of O(4)	169
10.2	Parametrization of O(4)+ as a direct product	170
10.3	Representations of O(4)+	172
10.4	The functions H _{i,K}	176
10.5	Properties of Gegenbauer polynomials	178
10.6	Spherical harmonics in four dimensions	183
СНА	PTER 11. EUCLIDEAN GROUP IN THE PLANE	189
11.1	Properties of the group E ₂	190
11.2	The Frobenius method of induced representations	192
11.3	Representations of E ₂	197
11.4	Representations of the Lie algebra of E ₂	199
11.5	Properties of Bessel functions	202
11.6	The method of contraction	206
11.7	Partner functions for the representations Δ_p	209
СНА	PTER 12. THE EUCLIDEAN GROUP IN SPACE	215
12.1	Representations of E ₃ by the Frobenius method	215
12.2	Explicit construction of the representations of E ₃	220
12.3	Properties of the spherical Bessel functions	225
12.4	Spherical Neumann and Hankel functions	229
12.5	Appendix	233
СНА	PTER 13. THE QUANTUM-MECHANICAL GROUP	234
13.1	The quantum-mechanical group	234
13.1	Properties of Laguerre polynomials	240
13.2	Harmonic oscillator wave functions	24:
REF	ERENCES	25
INDEX		25