Contents

	Preface	1X
1	Almost periodic functions in metric spaces	1
1	Definition and elementary properties of almost periodic	
	functions	1
2	Bochner's criterion	4
3	The connection with stable dynamical systems	8
4	Recurrence	9
5	A theorem of A. A. Markov	10
6	Some simple properties of trajectories	11
	Comments and references to the literature	12
2	Harmonic analysis of almost periodic functions	14
1	Prerequisites about Fourier-Stieltjes integrals	14
2	Proof of the approximation theorem	17
3	The mean-value theorem; the Bohr transformation;	
	Fourier series; the uniqueness theorem	21
4	Bochner-Fejer polynomials	25
5	Almost periodic functions with values in a Hilbert	
	space; Parseval's relation	31
6	The almost periodic functions of Stepanov	33
	Comments and references to the literature	36
3	Arithmetic properties of almost periods	37
1	Kronecker's theorem	37
2	The connection between the Fourier exponents of a	
	function and its almost periods	40
3	Limit-periodic functions	45
	-	

4	Theorem of the argument for continuous numerical				
_	complex-valued almost periodic functions	48			
	Comments and references to the literature	51			
4	Generalisation of the uniqueness theorem (N-almost				
	periodic functions)	53			
1	Introductory remarks, definition and simplest				
	properties of N-almost periodic functions	53			
2	Fourier series, the approximation theorem, and the				
	uniqueness theorem	59			
	Comments and references to the literature	62			
5	Weakly almost periodic functions	64			
1	Definition and elementary properties of weakly almost				
_	periodic functions	64			
2	Harmonic analysis of weakly almost periodic functions	68			
3	Criteria for almost periodicity	70			
	Comments and references to the literature	76			
6	A theorem concerning the integral and certain				
Ū	questions of harmonic analysis	77			
1	The Bohl-Bohr-Amerio theorem	77			
2	Further theorems concerning the integral	81			
3	Information from harmonic analysis	87			
4	A spectral condition for almost periodicity.	91			
5	Harmonic analysis of bounded solutions of linear				
-	equations	92			
	Comments and references to the literature	96			
7	Stability in the sense of Lyapunov and almost				
•	periodicity	98			
	Notation	98			
1	The separation properties	98			
2	A lemma about separation	101			
3		105			
4	- 4 . 4	107			
5		109			
6	1. 1.01	113			
7		116			

	Contents	VII
8	Realisation of the principle of the stationary point	
	when the dimension $m \leq 3$	117
9	Realisation of the principle of the stationary point	
	under monotonicity conditions	121
	Comments and references to the literature	123
8	Favard theory	124
1	Introduction	124
2	Weak almost periodicity (the case of a uniformly	
	convex space)	127
3	Certain auxiliary questions	130
4	Weak almost periodicity (the general case)	134
5	Problems of compactness and almost periodicity	135
6	Weakening of the stability conditions	140
7	On solvability in the Besicovitch class	142
	Comments and references to the literature	147
9	The method of monotonic operators	149
1	General properties of monotonic operators	149
2	Solvability of the Cauchy problem for an evolution	
	equation	153
3	The evolution equation on the entire line: questions	
	of the boundedness and the compactness of solutions	157
4	Almost periodic solutions of the evolution equation	161
	Comments and references to the literature	165
10	Linear equations in a Banach space (questions of	
	admissibility and dichotomy)	166
	Notation	166
1	Preliminary results	166
2	The connection between regularity and the	
	exponential dichotomy on the whole line	170
3	Theorems on regularity	172
4	Examples	176
	Comments and references to the literature	181
11	The averaging principle on the whole line for	
	parabolic equations	182
1	Bogolyubov's lemma	182
2	Some properties of parabolic operators	183

viii		Contents	
	3	The linear problem about averaging	186
	4	A non-linear equation	189
	5	The Navier-Stokes equation	193
	6	The problem on the whole space	195
		Comments and references to the literature	199
		Bibliography	200

Index

208