Contents

	List of figures	<i>page</i> xi
	Acknowledgements	xiii
	Introduction	1
1	Introduction to intonational phonology	6
1.1	Intonation	6
1.2	The IPO theory of intonational structure	14
1.3	Evidence for phonological assumptions in describing	
	intonation	20
1.4	Paralanguage and intonation	33
2	Fundamental concepts of the autosegmental-metrical theory	42
2.1	Linearity of tonal structure	43
2.2	Pitch accents, prominence, and tune-text association	45
2.3	Analysis of pitch accents in terms of level tones	59
2.4	Phonological interpretation of global F ₀ trends	73
3	Phonological representation of pitch in the	
	autosegmental-metrical theory	79
3.1	Pierrehumbert's notation and the structure of tunes	79
3.2	Basic intonational taxonomy	81
3.3	Modifications to the original analysis	89
3.4	Intonational meaning in Pierrehumbert's analysis	98
3.5	Some unresolved issues	102
3.6	Conclusion	111
4	Cross-language comparison of intonation	113
4.1	Intonational universals and intonational phonology	113
4.2	Tonal differences between 'intonation' languages	119

ix

4.3	Some extended illustrations	131
4.4	Melodic universals	147
5	Patterns of prominence	160
5.1	Prominence and focus	160
5.2	Prominence patterns across languages	168
5.3	Some potential problems	197
6	Prosodic structure	205
6.1	The structure of intonational tunes	206
6.2	A metrical theory of sentence stress	221
6.3	The nature of prosodic constituency	235
7	Pitch range	252
7.1	The relativity of pitch in phonological theory	252
7.2	The phonetics of pitch range variation	257
7.3	The phonology of pitch range effects	269
7.4	Gradience, pitch range, and paralanguage	280
	Notes	284
	References	302
	Index of names	321
	Index of languages	325
	Subject index	327

Figures

1.1	The hat pattern in the IPO model of intonation	page 17
1.2	Basic features of Fujisaki's model of intonation	26
1.3	The 'grid' in Gårding's model of intonation	28
1.4	Grønnum's model of Danish sentence intonation	29
1.5	The Swedish word accent distinction	32
2.1	Data from Pierrehumbert's Annal Manny experiment	66
2.2	Two different approaches to defining the 'prominence' of	
	accent peaks	69
2.3	Phonetic realisation in Bruce and Gårding's model	72
2.4	Two different ways of describing the overall downward trend	i
	of a pitch contour	75
3.1	Comparison between the H* and L*+H accents	84
3.2	The L*+H accent followed by different edge tone sequences	85
3.3	Terraced downstepping contour in English	86
3.4	Difference between H*+L and H* accents	87
3.5	Four different downstepping contours in English	91
3.6	Three possible transitions between two high accents	106
4.1	Glasgow English intonation contours from the HCRC Map	
	Task Corpus	124
4.2	The Italian sentence È una vongola, produced by a native	
	speaker and a non-native speaker	130
4.3	Overall contour shapes signalling location of focus in Chine	se 152
4.4	Chinese sentence-level 'tunes', according to Shen 1990	154
4.5	Effect of increasing emphasis on the pitch configurations of	
	the Swedish word accents	158
6.1	Division of the pitch contour in the typical analysis of the	
	British school	210
6.2	Non-emphatic American pronunciation of the phrase a	
	million dollars	224

xii List of figures

7.1	Normalised lexical tone contours in Vietnamese and Wu	
	Chinese	258
7.2	Distinction between level and span	262
7.3	Hypothetical average data for four target points in an English	
	declarative sentence	263
7.4	The hypothetical data from figure 7.3, replotted on a	
	normalised percentage scale	263
7.5	Correlation between target F ₀ values in two speakers'	
	readings of the same sentences	264
7.6	Correlation between target F ₀ values in one speaker's	
	'involved' and 'detached' readings of the same sentences	265
7.7	Correlation between target F ₀ values in normal and raised	
	voice for two speakers' readings of the same sentences	266
7.8	A simple model for normalising pitch range modifications	
	within a single speaker	268
7.9	A possible model of pitch range modification	269
7.10	Beckman and Pierrehumbert's reanalysis of the H*+HH*	
	sequence	275