CONTENTS

Introduction	1X
Preliminaries	хi
1. Conventions	xi
2. Notation	xi
3. Pre-requisities in point set topology (Chapters 1-6)	xi
4. Pre-requisites in measure theory (Chapters 7-12)	xii
5. Subadditive sequences	xiii
6. References	xiii
Chapter 1. Examples and basic properties	1
1.1. Examples	1
1.2. Transitivity	2
1.3. Other characterizations of transitivity	4
1.4. Transitivity for subshifts of finite type	5
1.5. Minimality and the Birkhoff recurrence theorem	6
1.6. Commuting homeomorphisms	8
1.7. Comments and references	9
Chapter 2. An application of recurrence to arith-	
metic progressions	11
2.1. Van der Waerden's theorem	11
2.2. A dynamical proof	12
2.3. The proofs of Sulemma 2.2.2 and Sublemma 2.2.3	15
2.4. Comments and references	17
Chapter 3. Topological entropy	19
3.1. Definitions	19
3.2. The Perron-Frobenius theorem and subshifts of finite	
type	23
3.3. Other definitions and examples	26
3.4. Conjugacy	30
3.5. Comments and references	32
Chapter 4. Interval maps	33
4.1. Fixed points and periodic points	33
4.2. Topological entropy of interval maps	37
4.3. Markov maps	39

vi CONTENTS

4.4.	Comments and references	44
Cha	pter 5. Hyperbolic toral automorphisms	47
	Definitions	47
5.2.	Entropy for Hyperbolic Toral Automorphisms	49
5.3.	Shadowing and semi-conjugacy	52
5.4.	Comments and references	55
Cha	pter 6. Rotation numbers	57
6.1.	Homeomorphisms of the circle and rotation numbers	57
	Denjoy's theorem	60
6.3.	Comments and references	64
Cha	pter 7. Invariant measures	65
	Definitions and characterization of invariant mea-	
	sures	65
7.2.	Borel sigma-algebras for compact metric spaces	65
	Examples of invariant measures	67
7.4.	Invariant measures for other actions	69
7.5.	Comments and references	71
Cha	pter 8. Measure theoretic entropy	73
	Partitions and conditional expectations	73
	The entropy of a partition	76
8.3.	The entropy of a transformation	79
8.4.	The increasing martingale theorem	82
8.5.	Entropy and sigma algebras	84
	Conditional entropy	86
	Proofs of Lemma 8.7 and Lemma 8.8	87
8.8.	Isomorphism	88
8.9.	Comments and references	89
Cha	pter 9. Ergodic measures	91
9.1.	Definitions and characterization of ergodic measures	91
9.2.	Poincaré recurrence and Kac's theorem	91
	Existence of ergodic measures	93
9.4.	Some basic constructions in ergodic theory	94
	9.4.1. Skew products	95
	9.4.2. Induced transformations and Rohlin towers	95
	9.4.3. Natural extensions	96
9.5.	Comments and references	97
	pter 10. Ergodic theorems	99
10.1.	The Von Neumann ergodic theorem	99
	The Birkhoff theorem (for ergodic measures)	102
	Applications of the ergodic theorems	106
	The Birkhoff theorem (for invariant measures)	111
10.5.	Comments and references	119

CONTENTS vii

Chap	pter 11. Mixing Properties	113
11.1.	Weak mixing	113
11.2.	A density one convergence characterization of weak	
	mixing	114
11.3.	A generalization of the Von Neumann ergodic theo-	
	rem	116
11.4.	The spectral viewpoint	118
11.5.	Spectral characterization of weak mixing	120
11.6.	Strong mixing	122
11.7.	Comments and reference	123
Chap	pter 12. Statistical properties in ergodic theory	125
12.1.	Exact endomorphisms	125
12.2.	Statistical properties of piecewise expanding Markov	
	maps	126
12.3.	Rohlin's entropy formula	133
12.4.	The Shannon-McMillan-Brieman theorem	134
12.5.	Comments and references	137
Chai	pter 13. Fixed points for homeomorphisms of	
	the annulus	139
13.1.	Fixed points for the annulus	139
	Outline proof of Brouwer's theorem	144
	Comments and references	146
Chai	pter 14. The variational principle	147
_	The variational principle for entropy	147
	The proof of the variational principle	147
	Comments and reference	152
Char	pter 15. Invariant measures for commuting trans-	
Onu	formations	153
15.1.	Furstenberg's conjecture and Rudolph's theorem	153
	The proof of Rudolph's theorem	153
	Comments and references	159
	pter 16. Multiple recurrence and Szemeredi's	
Cha	theorem	161
16.1	Szemeredi's theorem on arithmetic progressions	161
	An ergodic proof of Szemeredi's theorem	162
	The proof of Theorem 16.2	163
10.0.	16.3.1.(UMR) for weak-mixing systems, weak-mixing	
	extensions and compact systems	163
	16.3.2.The non-weak-mixing case	165
	16.3.3.(UMR) for compact extensions	165
	16.3.4.The last step	165
16.4	. Appendix to section 16.3	166
	16.4.1. The proofs of Propositions 16.3 and 16.4	166

viii CONTENTS

Index	
16.5. Comments and references	176
16.4.6.The proof of Proposition 16.9	175
16.4.5.The proof of Proposition 16.8	173
16.4.4.The proof of Proposition 16.7	172
16.4.3. The proof of Proposition 16.6	171
16.4.2. The proof of Proposition 16.5	171