Contents

NTRODUCTION			٧
l	ONE	-DIMENSIONAL MAPS	i
	1.1	One-Dimensional Maps	2
	1.2	Cobweb Plot: Graphical Representation of an Orbit	5
	1.3	Stability of Fixed Points	9
		Periodic Points	13
	1.5	The Family of Logistic Maps	17
	1.6	The Logistic Map $G(x) = 4x(1-x)$	22
	1.7	Sensitive Dependence on Initial Conditions	25
	1.8	Itineraries	27
		CHALLENGE 1: PERIOD THREE IMPLIES CHAOS	32
		Exercises	36
		LAB VISIT 1: BOOM, BUST, AND CHAOS IN THE BEETLE CENSUS	39

2	TWO	-DIMENSIONAL MAPS	43
	2.1	Mathematical Models	44
	2.2	Sinks, Sources, and Saddles	58
	2.3	•	62
	2.4	Coordinate Changes	67
	2.5	Nonlinear Maps and the Jacobian Matrix	68
	2.6	Stable and Unstable Manifolds	78
	2.7	Matrix Times Circle Equals Ellipse	87
		CHALLENGE 2: COUNTING THE PERIODIC ORBITS OF	
		LINEAR MAPS ON A TORUS	92
		EXERCISES	98
		LAB VISIT 2: IS THE SOLAR SYSTEM STABLE?	99
3	CHA	0\$	10!
	3.1	Lyapunov Exponents	106
	3.2	Chaotic Orbits	109
	3.3	Conjugacy and the Logistic Map	114
	3.4	Transition Graphs and Fixed Points	124
	3.5	Basins of Attraction	129
		CHALLENGE 3: SHARKOVSKII'S THEOREM	135
		EXERCISES	140
		LAB VISIT 3: PERIODICITY AND CHAOS IN A	
		CHEMICAL REACTION	143
4	FRACTALS		149
	4.1	Cantor Sets	150
	4.2	Probabilistic Constructions of Fractals	156
	4.3	Fractals from Deterministic Systems	163
	4.4	Fractal Basin Boundaries	164
	4.5	Fractal Dimension	172
	4.6	Computing the Box-Counting Dimension	177
	4.7	Correlation Dimension	180
		CHALLENGE 4: FRACTAL BASIN BOUNDARIES AND THE	
		Uncertainty Exponent	183
		Exercises	186
		LAB VISIT 4: FRACTAL DIMENSION IN EXPERIMENTS	188
5	CHA	OS IN TWO-DIMENSIONAL MAPS	193
	5.1	Lyapunov Exponents	194
	5.2	Numerical Calculation of Lyapunov Exponents	199
	5.3	Lyapunov Dimension	203
	5.4	A Two-Dimensional Fixed-Point Theorem	207
	5.5	Markov Partitions	212
	5.6	The Horseshoe Map	216

		CHALLENGE 5: COMPUTER CALCULATIONS AND SHADOWING EXERCISES LAB VISIT 5: CHAOS IN SIMPLE MECHANICAL DEVICES	222 226 228
6	6.1 6.2	Forward Limit Sets Chaotic Attractors Chaotic Attractors of Expanding Interval Maps Measure Natural Measure Invariant Measure for One-Dimensional Maps CHALLENGE 6: INVARIANT MEASURE FOR THE LOGISTIC MAP EXERCISES LAB VISIT 6: FRACTAL SCUM	231 233 238 245 249 253 256 264 266 267
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7	One-Dimensional Linear Differential Equations One-Dimensional Nonlinear Differential Equations Linear Differential Equations in More than One Dimension Nonlinear Systems Motion in a Potential Field Lyapunov Functions Lotka-Volterra Models CHALLENGE 7: A LIMIT CYCLE IN THE VAN DER POL SYSTEM EXERCISES LAB VISIT 7: FLY VS. FLY	273 275 278 284 294 300 304 309 316 321 325
8	PER 8.1 8.2 8.3	Limit Sets for Planar Differential Equations Properties of ω-Limit Sets Proof of the Poincaré-Bendixson Theorem Challenge 8: Two Incommensurate Frequencies Form a Torus Exercises Lab Visit 8: Steady States and Periodicity in a Squid Neuron	329 331 337 341 350 353
9	9.1 9.2 9.3 9.4 9.5 9.6	OS IN DIFFERENTIAL EQUATIONS The Lorenz Attractor Stability in the Large, Instability in the Small The Rössler Attractor Chua's Circuit Forced Oscillators Lyapunov Exponents in Flows	359 359 366 370 375 376 379

	CHALLENGE 9: SYNCHRONIZATION OF CHAOTIC ORBITS EXERCISES	387 393
	LAB VISIT 9: LASERS IN SYNCHRONIZATION	394
10	STABLE MANIFOLDS AND CRISES	399
	10.1 The Stable Manifold Theorem	401
	10.2 Homoclinic and Heteroclinic Points	409
	10.3 Crises	413
	10.4 Proof of the Stable Manifold Theorem	422
	10.5 Stable and Unstable Manifolds for Higher Dimensional Maps	430
	CHALLENGE 10: THE LAKES OF WADA	432
	Exercises	440
	LAB VISIT 10: THE LEAKY FAUCET: MINOR IRRITATION OR CRISIS?	441
11	BIFURCATIONS	447
•	11.1 Saddle-Node and Period-Doubling Bifurcations	448
	11.2 Bifurcation Diagrams	453
	11.3 Continuability	460
	11.4 Bifurcations of One-Dimensional Maps	464
	11.5 Bifurcations in Plane Maps: Area-Contracting Case	468
	11.6 Bifurcations in Plane Maps: Area-Preserving Case	471
	11.7 Bifurcations in Differential Equations	478
	11.8 Hopf Bifurcations	483
	CHALLENGE 11: HAMILTONIAN SYSTEMS AND THE	
	Lyapunov Center Theorem	491
	EXERCISES	494
	LAB VISIT 11: IRON + SULFURIC ACID → HOPF	
	Bifurcation	496
12	CASCADES	499
	12.1 Cascades and 4.669201609	500
	12.2 Schematic Bifurcation Diagrams12.3 Generic Bifurcations	504
	12.3 Generic Bifurcations 12.4 The Cascade Theorem	510
		518
	CHALLENGE 12: UNIVERSALITY IN BIFURCATION DIAGRAMS EXERCISES	525
	LAB VISIT 12: EXPERIMENTAL CASCADES	531
		532
13	STATE RECONSTRUCTION FROM DATA	537
	13.1 Delay Plots from Time Series	537
	13.2 Delay Coordinates	541
	13.3 Embedology	545
	CHALLENGE 13: Box-Counting Dimension	
	AND INTERSECTION	553

A MATRIX ALGEBRA	557
A.1 Eigenvalues and Eigenvectors	557
A.2 Coordinate Changes	561
A.3 Matrix Times Circle Equals Ellipse	563
B COMPUTER SOLUTION OF ODES	567
B.1 ODE Solvers	568
B.2 Error in Numerical Integration	570
B.3 Adaptive Step-Size Methods	574
ANSWERS AND HINTS TO SELECTED EXERCISES	577
BIBLIOGRAPHY	587
INDEX	595