CONTENTS | Chapter 1. | Background Notes | 1 | |------------|--|-----| | | Set-Valued Maps, 1 Complete Metric Spaces, 5 Banach Spaces, 9 Differentiable Functionals, 16 Support Functions and Barrier Cones of Convex Subsets, 26 | | | Chapter 2. | Smooth Analysis | 33 | | | Iterative Procedures for Inverting a Map, 34 Milnor's Proof of Brouwer's Fixed Point Theorem, 41 Local Study of the Equation f(x) = 0, 46 Birth and Death of Critical Points, 58 Further Degeneracies: Bifurcation, 70 Transversality Theory, 83 Proof of the Transversality Theorem and Applications, | 91 | | Chapter 3. | Set-Valued Maps | 103 | | | Set Valued Maps | 103 | | | • | 107 | | Chapter 4. | Upper and Lower Semicontinuity of Set-Valued Maps, Maps with Closed Convex Values, 121 Maps with Closed Convex Graphs, 130 Eigenvalues of positive Maps with Closed Convex | | | | Lagrange Multipliers, 214 Convex Optimization Problems, 220 Regularity of Solutions to Convex Optimization
Problems, 225 Lagrangians and Hamiltonians, 231 | | |------------|--|-----| | Chapter 5. | A General Variational Principle | 239 | | | Walking on Complete Metric Spaces, 239 Fixed Points of Nonexpansive Maps, 248 The ε-Variational Principle, 254 Applications to Convex Optimization, 261 Condition (C) of Palais and Smale, 269 Generic Differentiability, 279 Perturbed Optimization Problems, 285 | | | Chapter 6. | Solving Inclusions | 295 | | | Main Concepts of Game Theory, 299 Two-Person Zero-Sum Games: The Minimax
Theorem, 312 The Ky Fan Inequality, 325 Existence of Zeros of Set-Valued Maps, 336 Walras Equilibria and Price Decentralization, 354 Monotone Maps, 363 Maximal Monotone Maps, 379 Existence and Uniqueness of Solutions to Differential
Inclusions, 396 | | | Chapter 7. | Nonsmooth Analysis | 401 | | | Contingent and Tangent Cones, 405 Contingent Derivatives and Derivatives of a Set-Valued Map, 411 Epicontingent Derivatives and Epiderivatives of Real-Valued Functions, 418 Generalized Second Derivatives of Real-Valued Functions, 428 The Inverse Function Theorem for Set-Valued Maps, 4 Calculus of Contingent and Tangent Cones, Derivatives and Epiderivatives, 439 | 129 | 5. The Subdifferential of the Marginal Function and | Chapter 8. | Hamiltonian Systems | 451 | |--------------|--|-----| | - | The Least Action Principle, 452 A Dual Action Principle, 456 Nonresonant Problems, 464 Resonant Problems, 469 | | | | 5. Transresonant Problems, 475 | | | Comments | | 487 | | Bibliography | | 495 | | Author Index | | 517 | | Subject Ind | lex | |