CONTENTS

	Preface	PAGE Vii
	Вівцю варну	xv i
ı.	Interpolation	
	1. Introduction	1
	2. The Taylor expansion	2
	3. The finite Taylor series with the remainder term	$\frac{2}{3}$
	4. Interpolation by polynomials	5
	5. The remainder of Lagrangian interpolation formula	6
	6. Equidistant interpolation	8
	7. Local and global interpolation	11
	8. Interpolation by central differences	13
	9. Interpolation around the midpoint of the range	16
	10. The Laguerre polynomials	17
	11. Binomial expansions	21
	12. The decisive integral transform	24
	13. Binomial expansions of the hypergeometric type	26
	14. Recurrence relations	27
	15. The Laplace transform	29
	16. The Stirling expansion	32
	17. Operations with the Stirling functions	34
	18. An integral transform of the Fourier type	35
	19. Recurrence relations associated with the Stirling series	37
	20. Interpolation of the Fourier transform	40
	21. The general integral transform associated with the Stirling	
	series	42
	22. Interpolation of the Bessel functions	45
2.	HARMONIC ANALYSIS	
	1. Introduction	4 9
	2. The Fourier series for differentiable functions	5 0
	3. The remainder of the finite Fourier expansion	53
	4. Functions of higher differentiability	56
	5. An alternative method of estimation	58
	6. The Gibbs oscillations of the finite Fourier series	6 0
	7. The method of the Green's function	66
	8. Non-differentiable functions. Dirac's delta function	68

xii CONTENTS

3.

4.

		PAGE
	Smoothing of the Gibbs oscillations by Fejér's method	71
	The remainder of the arithmetic mean method	7 2
	Differentiation of the Fourier series	74
	The method of the sigma factors	75
	Local smoothing by integration	76
14.	Smoothing of the Gibbs oscillations by the sigma method	78
	Expansion of the delta function	80
16.	The triangular pulse	81
17.	Extension of the class of expandable functions	83
18.	Asymptotic relations for the sigma factors	84
19.	The method of trigonometric interpolation	89
20.	Error bounds for the trigonometric interpolation method	91
21.	Relation between equidistant trigonometric and polynomial	
	interpolations	93
22.	The Fourier series in curve fitting	98
MATE	RIX CALCULUS	
1.	Introduction	100
2.	Rectangular matrices	102
3.	The basic rules of matrix calculus	103
	Principal axis transformation of a symmetric matrix	106
5.	Decomposition of a symmetric matrix	111
6.	Self-adjoint systems	113
7.	Arbitrary $n \times m$ systems	115
8.	Solvability of the general $n \times m$ system	118
9.	The fundamental decomposition theorem	120
10.	The natural inverse of a matrix	124
11.	General analysis of linear systems	127
12.	Error analysis of linear systems	129
13.	Classification of linear systems	134
	Solution of incomplete systems	139
15.	Over-determined systems	141
16.	The method of orthogonalisation	142
17.	The use of over-determined systems	144
18.	The method of successive orthogonalisation	148
	The bilinear identity	152
20.	Minimum property of the smallest eigenvalue	158
Тне І	Function Space	
	Introduction	163
2.	The viewpoint of pure and applied mathematics	164
3.	The language of geometry	165
	Metrical spaces of infinitely many dimensions	166
5.	The function as a vector	167
	The differential operator as a matrix	170

CONTENTS	
----------	--

xiii

			PAGE
	7.	The length of a vector	173
	8.	The scalar product of two vectors	175
	9.	The closeness of the algebraic approximation	175
	10.	The adjoint operator	179
	11.	The bilinear identity	181
	12.	The extended Green's identity	182
	13.	The adjoint boundary conditions	184
	14.	Incomplete systems	187
	15.	Over-determined systems	19 0
	16.	Compatibility under inhomogeneous boundary conditions	192
	17.	Green's identity in the realm of partial differential operators	195
	18.	The fundamental field operations of vector analysis	198
	19.	Solution of incomplete systems	201
5.	Тне	Green's Function	
	1.	Introduction	206
	2.	The role of the adjoint equation	207
	3.	The role of Green's identity	208
	4.	The delta function $\delta(x, \xi)$	208
		The existence of the Green's function	211
	6.	Inhomogeneous boundary conditions	217
	7.	The Green's vector	22 0
	8.	Self-adjoint systems	225
		The calculus of variations	229
	10.	The canonical equations of Hamilton	23 0
	11.	The Hamiltonisation of partial operators	237
	12.	The reciprocity theorem	239
	13.	Self-adjoint problems. Symmetry of the Green's function	241
		Reciprocity of the Green's vector	241
		The superposition principle of linear operators	244
	16.	The Green's function in the realm of ordinary differential	
		operators	247
		The change of boundary conditions	255
		The remainder of the Taylor series	256
		The remainder of the Lagrangian interpolation formula	258
		Lagrangian interpolation with double points	263
		Construction of the Green's vector	266
	22.	The constrained Green's function	270
	23.	Legendre's differential equation	275
		Inhomogeneous boundary conditions	278
		The method of over-determination	281
		Orthogonal expansions	286
		The bilinear expansion	291
		Hermitian problems	299
		The completion of linear operators	308

xiv Contents

		PAGE
3.	COMMUNICATION PROBLEMS	
	1. Introduction	315
	2. The step function and related functions	315
	3. The step function response and higher order responses	32 0
	4. The input-output relation of a galvanometer	323
	5. The fidelity problem of the galvanometer response	325
	6. Fidelity damping	327
	7. The error of the galvanometer recording	328
	8. The input-output relation of linear communication devices	330
	9. Frequency analysis	334
	10. The Laplace transform	336
	11. The memory time	337
	12. Steady state analysis of music and speech	339
	13. Transient analysis of noise phenomena	342
7.	STURM-LIOUVILLE PROBLEMS	
	1. Introduction	348
	2. Differential equations of fundamental significance	349
	3. The weighted Green's identity	352
	4. Second order operators in self-adjoint form	356
	5. Transformation of the dependent variable	359
	6. The Green's function of the general second order differential	
	equation	364
	7. Normalisation of second order problems	368
	8. Riccati's differential equation	370
	9. Periodic solutions	371
	10. Approximate solution of a differential equation of second	ı
	order	374
	11. The joining of regions	376
	12. Bessel functions and the hypergeometric series	378
	13. Asymptotic properties of $J_p(z)$ in the complex domain	380
	14. Asymptotic expression of $J_p(x)$ for large values of x	382
	15. Behaviour of $J_p(z)$ along the imaginary axis	384
	16. The Bessel functions of the order $\frac{1}{3}$	385
	17. Jump conditions for the transition "exponential-periodic"	387
	18. Jump conditions for the transition "periodic-exponential"	388
	19. Amplitude and phase in the periodic domain	389
	20. Eigenvalue problems	390
	21. Hermite's differential equation	391
	22. Bessel's differential equation	394
	23. The substitute functions in the transitory range	400
	24. Tabulation of the four substitute functions	404
	25. Increased accuracy in the transition domain	405
	26. Eigensolutions reducible to the hypergeometric series	409
	27. The ultraspherical polynomials	410

CONTENTS XV

			PAGE
		The Legendre polynomials	412
		The Laguerre polynomials	418
		The exact amplitude equation	420
	31.	Sturm-Liouville problems and the calculus of variations	425
8.	Boun	DARY VALUE PROBLEMS	
	1.	Introduction	432
		Inhomogeneous boundary conditions	435
		The method of the "separation of variables"	438
		The potential equation of the plane	439
		The potential equation in three dimensions	448
		Vibration problems	454
		The problem of the vibrating string	456
	8.	The analytical nature of hyperbolic differential operators	464
		The heat flow equation	469
	10.	Minimum problems with constraints	472
		Integral equations in the service of boundary value problems	
		The conservation laws of mechanics	479
	13.	Unconventional boundary value problems	486
		The eigenvalue $\lambda = 0$ as a limit point	487
	10.	Variational motivation of the parasitic spectrum	494
		Examples for the parasitic spectrum	498
		Physical boundary conditions	504
	10.	A universal approach to the theory of boundary value problems	
		•	508
9.		ERICAL SOLUTION OF TRAJECTORY PROBLEMS	
		Introduction	512
		Differential equations in normal form	513
		Trajectory problems	514
		Local expansions	515
		The method of undetermined coefficients	517
		Lagrangian interpolation in terms of double points	520
		Extrapolations of maximum efficiency	521
		Extrapolations of minimum round-off	521
		Estimation of the truncation error	524
		End-point extrapolation	526
	11.	Mid-point interpolations The problem of starting polycomes	527
		The problem of starting values The accumulation of truncation errors	529
		The method of Gaussian quadrature	531
			534
		Global integration by Chebyshev polynomials Numerical aspects of the method of global integration	536
		Numerical aspects of the method of global integration The method of global correction	540
	11.	Appendix	546
		Index	551 555
		AHAVA	บบอ