Contents

Foreword		xi		
Preface		xiii		
Introducti	ion: From Convex Analysis to Abstract Convex Analysis	1		
0.1	Abstract Convexity of Sets	1		
	0.1a Inner Approaches	2		
	0.1b Intersectional and Separational Approaches			
	0.1c Approaches via Convexity Systems and Hull Operators	6		
0.2	Abstract Convexity of Functions	9		
0.3	Abstract Convexity of Elements of Complete Lattices	12		
0.4	Abstract Quasi-Convexity of Functions	14		
0.5	Dualities	14		
0.6	Abstract Conjugations	16		
0.7	Abstract Subdifferentials	19		
0.8	0.8 Some Applications of Abstract Convex Analysis to Optimization			
	Theory	20		
	0.8a Applications to Abstract Lagrangian Duality	20		
	0.8b Applications to Abstract Surrogate Duality	28		
Chapter (One Abstract Convexity of Elements of a Complete Lattice	34		
1.1	The Main (Supremal) Approach: M-Convexity of Elements of a			
	Complete Lattice E , Where $\mathcal{M} \subseteq E$	34		
1.2	Infimal and Supremal Generators and M-Convexity	40		
1.3	An Equivalent Approach: Convexity Systems	44		
1.4	Another Equivalent Approach: Convexity with Respect to a Hull			
	Operator	47		
Chapter T	Two Abstract Convexity of Subsets of a Set	5(
2.1	\mathcal{M} -Convexity of Subsets of a Set X , Where $\mathcal{M} \subseteq 2^X$	50		
2.2	Some Particular Cases	56		
	2.2a Convex Subsets of a Linear Space X	56		
	2.2b Closed Convex Subsets of a Locally Convex Space <i>X</i>	58		

v

vi Contents

		2.2c Evenly Convex Subsets of a Locally Convex Space.	X 60
		2.2d Closed Affine Subsets of a Locally Convex Space X	61
		2.2e Evenly Coaffine Subsets of a Locally Convex Space	
		2.2f Spherically Convex Subsets of a Metric Space X	63
		2.2g Closed Subsets of a Topological Space X	64
		2.2h Order Ideals and Order Convex Subsets of a Poset X	<i>C</i> 64
		2.2i Parametrizations of Families $\mathcal{M} \subseteq 2^X$, Where \mathcal{M}	
		Is a Set	70
	2.3		
		W-Convexity of Subsets of a Set X, Where $W \subseteq \overline{R}^X$	72
	2.4	· —	83
2.5			
		to a Set of Functions $W \subseteq \overline{R}^X$	83
	2.6		
		$\varphi: X \times W \to \overline{R}$ Is a Coupling Function	85
		,	
Cha	pter T	Three Abstract Convexity of Functions on a Set	92
	3.1	• • • • • • • • • • • • • • • • • • •	92
	3.2		104
		3.2a $C(X^* + R)$, Where X is a Locally Convex Space	104
		3.2b $C(X^*)$, Where X is a Locally Convex Space	108
		3.2c The Case Where $X = \{0, 1\}^n$ and $W \subseteq (R^n)^* _X$	111
		3.2d The Case Where $X = \{0, 1\}^n$ and $W = (R^n)^* _{X} +$	R 114
		3.2e α -Hölder Continuous Functions with Constant N ,	
		Where $0 < \alpha \le 1$ and $0 < N < +\infty$	119
		3.2f Suprema of α -Hölder Continuous Functions, Where	
		$0 < \alpha \leqslant 1$	121
		3.2g The Case Where $\alpha > 1$	125
	3.3		
		$\varphi: X \times W \to \overline{R}$ Is a Coupling Function	127
~.	_		
Cha	pter F	Four Abstract Quasi-Convexity of Functions on a Set	129
	4.1	\mathcal{M} -Quasi-Convexity of Functions on a Set X, Where $\mathcal{M} \subseteq \mathcal{M}$	2 ^x 129
	4.2	-	140
		4.2a Quasi-Convex Functions on a Linear Space X	140
		4.2b Lower Semicontinuous Quasi-Convex Functions o	
		Locally Convex Space X	142
		4.2c Evenly Quasi-Convex Functions on a Locally Con	
		Space X	143
		4.2d Evenly Quasi-Coaffine Functions on a Locally Con	
		Space X	144
		4.2e Lower Semicontinuous Functions on a Topologic	
		Space X	145
		4.2f Nondecreasing Functions on a Poset <i>X</i>	145
	4.3	<u> </u>	
		Set Y Where $W \subset \overline{\mathbb{P}^X}$	146

Contents vii

4.4	Relations Between W-Convexity and W-Quasi-Convexity of	
	Functions on a Set X, Where $W \subseteq \overline{R}^X$	151
4.5	Some Particular Cases	154
	4.5a Lower Semicontinuous Quasi-Convex Functions	
	Revisited	154
	4.5b Evenly Quasi-Convex Functions Revisited	158
	4.5c Evenly Quasi-Coaffine Functions Revisited	161
4.6	(W, φ) -Quasi-Convexity of Functions on a Set X, Where W Is a	
	Set and $\varphi: X \times W \to \overline{R}$ Is a Coupling Function	162
4.7	Other Equivalent Approaches: Quasi-Convexity of Functions on	
	a Set X, with Respect to Convexity Systems $\mathcal{B} \subseteq 2^X$ and Hull	
	Operators $u: 2^X \to 2^X$	165
4.8		
	among Hull Operators on \overline{R}^X	166
		4=4
Chapter I	Five Dualities Between Complete Lattices	172
5.1	Dualities and Infimal Generators	172
5.2	Duals of Dualities	176
5.3		182
5.4	Partial Order and Lattice Operations for Dualities	186
Chapter :	Six Dualities Between Families of Subsets	190
6.1	V -W T T C	190
6.2		200
0.2	6.2a Some Minkowski-Type Dualities	201
	6.2b Some Dualities Obtained from the Minkowski-Type	
	Dualities Δ_M , by Parametrizing the Family \mathcal{M}	201
6.3	Representations of Dualities $\Delta: 2^X \to 2^W$ with the Aid of	
0.2	Subsets Ω of $X \times W$ and Coupling Functions $\varphi : X \times W \to \overline{R}$	208
6.4		216
	6.4a Representations with the Aid of Subsets Ω of $X \times W$	216
	6.4b Representations with the Aid of Coupling Functions	
	$\varphi: X \times W \to \overline{R}$	217
Chapter	Seven Dualities Between Sets of Functions	219
7.1	Dualities $\Delta : \overline{R}^X \to \overline{R}^W$, Where X and W Are Two Sets	219
7.1		
1.2	and $(A, \leq) \subseteq (\overline{R}, \leq)$ and F Are Complete Lattices	224
7.3	V = W	
1.3	$(B, \leqslant) \subseteq (\overline{R}, \leqslant) \text{ Are Complete Lattices}$	230
7.4		237
7.4	7.4a The Case Where $A = \{0, +\infty\}$	237
	7.4b The Case Where $A = B = [0, 1]$	239
7.5	$\mathbf{v} = \mathbf{u}$	240
7.6		241

viii Contents

Chapter E	agni Conjugations	242				
8.1	Conjugations $c: \overline{R}^X \to \overline{R}^W$, Where X and W Are Two Sets	242				
8.2						
	Coupling Functions $\varphi: X \times W \to \overline{R}$					
8.3	Biconjugates and Abstract Convex Hulls					
8.4	Some Particular Cases	261				
	8.4a The Case Where $X = \{0, 1\}^n$, $W = (R^n)^* _X$ and					
	$arphi = arphi_{nat}$	261				
	8.4b The Case Where X Is a Metric Space, $W = X$,					
	and $\varphi = \varphi_{\alpha,N}$	263				
	8.4c The Case Where X Is a Metric Space, $W = X \times$					
	$(R_+ \setminus \{0\})$, and $\varphi = \varphi_\alpha$	266				
8.5	The Conjugate of $f + -h$, Where $f, h \in \overline{R}^X$	267				
8.6	Conjugations of Type Lau	274				
8.7	Some Particular Cases	284				
	8.7a Conjugations of Type Lau Associated to a Family \mathcal{M} of					
	Subsets of a Set X	283				
	8.7b Quasi-Conjugation	287				
	8.7c Semiconjugation	290				
	8.7d Pseudoconjugation	291				
0.0	8.7e Some Extensions of the Preceding Conjugations $\overline{R}_{X} = \overline{R}_{X} = \overline{R}_{X} = \overline{R}_{X}$	292				
8.8	Relations Between Conjugations $c: \overline{R}^X \to \overline{R}^W$ and Dualities	296				
0.0	$\Delta: 2^X \to 2^W$, Where X and W Are Two Sets					
8.9	Some Particular Cases 8.00 The Conjugation of Type Lay Associated to a	304				
	8.9a The Conjugation of Type Lau Associated to a	304				
	Minkowski-Type Duality 8.9b Conjugations of Type Lau Associated to Parametrized	304				
	Minkowski-Type Dualities	304				
8.10	The Conjugate of Type Lau of $\max\{f, -h\}$, Where $f, -h \in \overline{R}^X$	308				
8.11	Conjugate Functions and Level Sets	318				
0.11	Conjugate I difetions and Devel Sets	510				
Chapter N	line ∨-Dualities and ⊥-Dualities	335				
9.1	The Binary Operations \perp and \top	335				
9.2	∨-Dualities	338				
9.3	⊥-Dualities	342				
9.4	The Duals of ∨-Dualities	347				
9.5	The Duals of ⊥-Dualities	351				
9.6	Characterizations of Conjugations of Type Lau with the Aid of					
	∨-Dualities and ⊥-Dualities	355				
Chapter T	en Abstract Subdifferentials	359				
10.1	Subdifferentials with Respect to a Duality $\Delta : \overline{R}^X \to \overline{R}^W$,					
10.1	Where X and W Are Two Sets	359				
10.2	Subdifferentials with Respect to a Conjugation $c: \overline{R}^X \to \overline{R}^W$,					
	Where X and W Are Two Sets	364				

Contents ix

485

10.3 Some Particular Cases			
20.0		The Case Where $X = \{0, 1\}^n$, $W = (R^n)^* _X$, and	
	Ψ	$ ho = arphi_{ m nat}$	367
	10.3b T	The Case Where X Is a Metric Space, $W = X$, and	
	Ψ	$ \rho = \varphi_{\alpha,N} $	368
	10.3c T	The Case Where X Is a Metric Space, $W = X \times X$	
	($R_+ \setminus \{0\}$), and $\varphi = \varphi_{\alpha}$	369
10.4	The Subd	ifferential of $f + -h$ at x_0 , Where $f, h \in \overline{R}^X$ and	
	$x_0 \in X$		370
10.5	Subdiffere	entials with Respect to Conjugations of Type Lau	371
10.6		ticular Cases	375
	10.6a I	$L(\Delta)$ -Subdifferentials, for Minkowski-Type and	
	F	Parametrized Minkowski-Type Set-Dualities Δ	375
	10.6b S	Subdifferentials with Respect to Quasi-Conjugations;	
	(Quasi-Subdifferentials	376
	10.6c S	Subdifferentials with Respect to Semiconjugations;	
	9	Semisubdifferentials	379
	10.6d S	Subdifferentials with Respect to Pseudoconjugations;	
		Pseudosubdifferentials	383
10.7	Subdiffer	entials with Respect to ∨-Dualities and ⊥-Dualities	384
Notes and	! Remarks		387
Reference	es .		461
Notation	Index		475
Author In	dex		48

Subject Index