Contents

Forev						•				v
		-	~	roduction		•	•	•	•	1
				a family						
2.	Least	upper	bound of	a family	of unif	orm s	tructu	res :	3	
		mpact s		Į.						
		vergen			_		_			
5.	G -Con	vergen	ce in the	spaces of	contin	uous 1	mappi	ngs	8	
6.	Equic	ontinuc	us and u	niformly	equicor	ntinuc	ous set	ts 8		
7.				and prec	ompact	sets	of co	ntinu	ous	
	iuncti	ons I	2							
Снарт	rer 1	Genera	al propert	ies .		•				14
1.	Gener	al defin	ition of a	topologi	cal vec	tor sp	ace	14		
				quotients		1				
				opings, ho		ohisn	ns 16	3		
			cture of		.7	1				
5.	Topole	ogy def	ined by a	semi-no	rm 18					
		alities o		g spaces		by fa	milies	of se	mi-	
7			: general	anitonia	23					
				se for G-c		an aag	25			
				ces of co				27		
				paces $\mathscr{E}^{(m)}$					31	
			lirect sun		una	O. 11. K	JO21 11 U	102		
				nite dime	nsion o	r codi	mensi	on 3	7	
13.	Locall	v preco	mpact T	VS 38					•	
				phisms, c	losed gr	aph t	heore	m 39)	
				theorem		•				
Снарт	rer 2	The ge	neral dua	lity theor	ems on	locall	y conv	ex spa	ces	46
1.	Introd	luction	46							
2.	Conve	x sets.	disked se	ts 47						
				ered vect	or space	es 49	9			

4.	Correspondence between semi-norms and absorbing disks.							
	Characterization of locally convex spaces 50							
5.	Convex sets in TVS 52							
6.	The Hahn-Banach theorem 53							
7.	Separation of convex sets. Characterization of the closure							
	of a convex set 56							
8.	Dual system, weak topology 58							
9.	Polarity 61							
10.	The G-topologies on a dual 64							
	The LCTVS as duals having G-topologies 66							
	Mackey's theorem: general formulation. Bidual of an LCTVS 68							
13.	Topologies compatible with a duality. The Mackey topology 70							
14	The completion of an LCTVS 73							
	Duality for subspaces, quotients, products, projective							
10.	limits 76							
16	The transpose of a linear mapping; characterization of							
10.	homomorphisms 80							
17.	Summary and complementary results for normed							
	spaces 86							
18.	Elementary properties of compactness and weak							
	compactness 89							
	,							
Снарт	TER 3 Spaces of linear mappings							
	Generalities on the spaces of linear mappings 99							
2.	Bounded sets in the spaces of linear mappings 102							
3.	Relationship between bounded sets and equicontinuous							
	sets. Barrelled spaces 106							
4.	Bornological spaces 110							
5.	. Bilinear functions: types of continuity. Continuity and							
	separate continuity 114							
	Spaces of bilinear mappings. Definitions and notations 122							
7.	. Linear mappings from an LCTVS into certain function							
	spaces. Mappings into a space of continuous functions 126							
8.	Differentiable vectorial functions 131							

CHAPTER 4 Study of some special classes of spaces .

136

Part 1 Inductive limits, $(\mathcal{L} \mathcal{F})$ spaces	
 Generalities 136 Examples 139 Strict inductive limits 140 Direct sums 142 (LF) spaces 146 Products and direct sums of lines 150 	
Part 2 Metrisable LCTVS	
 Preliminaries 154 Bounded subsets of a metrisable LCTVS 156 T_c Topology on the dual 158 	
Part 3 $(\mathscr{D}\mathscr{F})$ Spaces	
 Generalities 164 Bilinear mappings on the product of two (DF) spaces 167 Stability properties 170 Complementary results 173 	
Part 4 Quasi-normable spaces and Schwartz spaces	
 Definition of quasi-normable spaces 176 Lifting of strongly convergent sequences of linear forms on a subspace 178 Quasi-normability and compactness 179 Schwartz spaces 182 	
CHAPTER 5 Compactness in locally convex topological vector spaces (LCTVS)	186
Part 1 The Krein-Milman theorem	
 Extreme points 186 Extreme generators 188 	
Part 2 Theory of compact operators	
 Generalities 193 General theorems for finite dimension 193 Generalities on the spectrum of an operator 196 The Riesz theory of compact operators 201 	

Part 3	General	criteria	of	compactness
--------	---------	----------	----	-------------

- 1. Šmulian's theorem 206
- 2. Eberlein's theorem 207
- 3. Krein's theorem 211
 Supplementary exercises 213

Part 4 Weak compactness in L^1

1. The Dunford-Pettis criterion and its first consequences 216

2. Application of the Dunford-Pettis criterion 231 Supplementary exercises 240