CONTENTS

GENERAL INTRODUCTION		
PART 0 : A R	EVIEW OF THE LINEAR BACKGROUND	
Intro	duction	3
§ 0.3 § 0.4 § 0.5 § 0.6 § 0.7	Bornological vector spaces Elements of duality Compact and nuclear mappings in normed spaces Schwartz and nuclear spaces A few classes of infinite dimensional spaces Compact and nuclear subsets of Fréchet spaces	4 10 15 19 22 25 29
§ 0.8		33
PART I: BAS	IC DIFFERENTIAL CALCULUS AND HOLOMORPHY	
Intro	duction	41
Chapt	er 1: Differentiable mappings, basic properties	45
§ 1.0 § 1.1 § 1.2 § 1.3 § 1.4 § 1.5	Definition of (Silva) differentiable mappings Definitions of C^n and C^∞ mappings Mean value theorem and Taylor's formulas C^∞ mappings in the enlarged sense	47 48 52 55 61
§ 1.6	between normed spaces" C^{∞} mappings of uniform bounded type	69 72
Chapt	ter 2 : Holomorphic mappings, basic properties	77
§ 2.2	Gateaux analytic mappings Silva holomorphic mappings Holomorphic mappings and Silva holomorphic	79 83
	mappings in the enlarged sense C [©] differentiability of holomorphic mappings An example	8 8 9 2 9 8
§ 2.6	Series of homogeneous polynomials	101
§ 2.7	Holomorphic mappings of uniform bounded type Holomorphic representation of Fock spaces of	105
-	Boson Fields	109

x Contents

	Chapte	r 3: Classical properties of holomorphic mappings	113
	§ 3.1 § 3.2 § 3.3 § 3.4		115 118 123 126
	Chapte	\underline{r} 4: Topologies on $\mathfrak{F}(\Omega,F)$ and $\mathfrak{K}_{S}(\Omega,F)$	129
	§ 4.1§ 4.2§ 4.3§ 4.4	Completeness of $\mathcal{K}_{S}(\Omega, F)$ and $\mathcal{S}(\Omega, F)$ Schwartz property of $\mathcal{K}_{S}(\Omega, F)$ and $\mathcal{S}(\Omega, F)$	131 134 138 142
	Chapter 5: Approximation and density results		
	§ 5.1 § 5.2 § 5.3	· · · · · · · · · · · · · · · · · · ·	145 149 154
	Chapte	r 6: ε-product and kernel theorems	157
	§ 6.1 § 6.2 § 6.3	Schwartz ε -product in spaces of holomorphic functions Schwartz ε -product in spaces of C^∞ functions Approximation property in $\mathcal{K}_S(\Omega)$ and $\mathfrak{F}(\Omega)$	159 164 166
	Chapter 7: The Fourier-Borel and Fourier transforms		
	§ 7.1 § 7.2 § 7.3 § 7.4	transform The Fourier-Borel isomorphism	169 176 182
	Chapte	r 8: Nuclearity of spaces of holomorphic or C [©] mappings	192
	§ 8.1 § 8.2 § 8.3	Nuclearity of $\mathcal{K}_S(\Omega)$ Strong nuclearity of $\mathcal{K}_S(\Omega)$ Non nuclearity of $\mathcal{S}(\Omega)$	193 201 205
PART II	CONV	VOLUTION AND 5 EQUATIONS	
	uction	206	
	Chapte	er 9: Convolution equations in $P(E)$	208
	§ 9.2	Formal power series and duality A division result The convolution operators on P(E) Existence of solutions	209 213 217 222

Contents xi

Chapter 10: Convolution equations in spaces of	
entire functions of exponential type	223
§ 10.1 The convolution operators on $\mathfrak{F}_{S}(\Omega)$	224
§ 10.2 Approximation of the solutions	229
§ 10.3 Existence of solutions	235
Chapter 11: Division of distributions	245
§ 11.1 The Weierstrass preparation theorem	246
§ 11.2 Division by a complex polynomial	252
§ 11.3 Division of distributions by holomorphic functions	262
§ 11.4 Application to existence of solutions	266
§ 11.5 Division by real analytic functions of finite type	268
§ 11.6 Impossibility of the division by real polynomials	272
Chapter 12: Convolution equations in spaces of holomorphic functions	277
§ 12.1 The convolution operators on $\mathfrak{K}_{\mathbf{S}}(\mathbf{E})$	279
§ 12.2 Entire functions of nuclear bounded type on a	202
Banach space	283
§ 12.3 The convolution operators on $\mathcal{K}_{\mathbf{u}, \mathbf{b}}(\mathbf{E})$	293
§ 12.4 The convolution operators on $\mathcal{K}_{N,b}(E)$	301
§ 12.5 A division result	308
§ 12.6 Existence and approximation results in $\mathcal{K}_{N,b}(E)$ § 12.7 Existence and approximation results in $\mathcal{K}_{u,b}(E)$	317
	321
and $\Re_{S}(E)$ § 12.8 Convolution operators of finite type	324
Chapter 13: Linear finite difference partial differential	
equations in &(E)	326
§ 13.1 A division result by imaginary exponential	
polynomials	327
§ 13.2 A Paley-Wiener-Schwartz theorem and a	
division result	337
§ 13.3 Existence and approximation of solutions in	
normed spaces	342
§ 13.4 Existence of solutions in locally convex spaces	346
Chapter 14: Pseudo-convex domains and approximation	
results	347
§ 14.1 Glimpse at pseudo-convexity and domains of	
holomorphy	348
§ 14.2 The Lévi problem	354
§ 14.3 The Runge approximation theorem	362
§ 14.4 An approximation theorem	372
Chapter 15: The o equation	376
§ 15.1 Differential forms and $\overline{\delta}$ operator § 15.2 A review of Hormander's L^2 estimates and	377
§ 15.2 A review of Hormander's L estimates and existence theorems	379
EVIDICITE CHICOTOTTO	ンリフ

xii Contents

§ 15.3	A review on integration in Hilbert spaces	383
§ 15.4	A basic existence result	388
§ 15.5	An hypoellipticity result	3 98
	The $\overline{\delta}$ equation in a scale of Hilbert spaces Existence of C^{∞} solutions in pseudo-convex	4 01
•	open subsets of DFN spaces	404
§ 15.8	Existence of C^{∞} solutions in nuclear ℓ .c.s.	407
Chapter	r 16: Some applications of the δ equation	409
§ 16.1	Solution of the first Cousin problem	410
§ 16.2	A counterexample	412
§ 16.3	On solutions of some homogeneous convolution	
	equations	416
Bibliographic Notes		423
Bibliography		431
Index		453