CONTENTS

1.

Chapter 1. Metric Vector Spaces 1 Basic Definitions 1

Chapter 2. Incidence Structures 9

2. Incidence Structures 10

3. Representation in a Basis 5

2. Isotropic Subspaces and Witt-Index 3

Ternary Equivalence Relations 9

4. Reflections and the Orthogonal Group 6

3.	Projective Incidence Structures and Substructures 12	
4.	Projective and Affine Incidence Structures Over a Field 1	4
5.	Incidence Structures Over a Metric Vector Space 15	
Chapter	r 3. Metric Concepts 18	
1.	Classical Euclidean and Non-Euclidean Planes 18	
2.	Incidence Structures with Orthogonality 21	
3.	Metric Incidence Structure Over a Metric Vector Space 2	22
4.	Incidence Structures with Reflections 24	
5.	Complete Metric Planes 24	
6.	Metric Plane Over a Metric Vector Space 30	
7.	Definition of Euclidean and Non-Euclidean Coordinate	
	Planes 33	
Chapter	4. S-Groups and S-Group Planes 35	
1.	Definition 35	
2.	Group Plane of an S-Group 35	
3.	Elementary Properties 37	
4.	Reflections and Motions 38	
5.	Some Metric Configuration Theorems for S-Group Planes	39
6.	The Center of an S-Group 41	
7	S-Group Planes and S-Planes 42	

X CONTENTS

Chapter 5. S-Group Planes with Δ -Connected Points 47

- 1. The Reduction Theorem 47
- 2. The Theorem of the Set of Perpendiculars to a Line 49
- 3. The Mapping σ_{qAB} (Gegenpunktpaarung) 54
- 4. Dropping a Perpendicular to a Given Line Through a Given Point 58
- 5. Theorem of Pappus-Brianchon 60
- 6. Theorem of Desargues 62
- 7. Embeddable S-Group Planes 66
- 8. Quadratic Form of S-Group Planes with Completely Connected Points 66

Chapter 6. Complete S-Group Planes 77

- 1. Main Theorems on Complete S-Group Planes 77
- 2. 2-Δ-Connected Points in an Arbitrary S-Group Plane 78
- 3. The Five Types of Complete S-Group Planes 83
- 4. The Elliptic Planes 89
- 5. The Euclidean Planes 91
- The Strubecker Planes 95
- 7. The Hyperbolic-Metric Planes 104
- 8. The Minkowskian Planes 115
- 9. Main Theorem on Complete Metric Planes 130
- 10. Polar Points in Complete S-Group Planes 132
- 11. Characteristic of a Complete S-Group Plane 135

Chapter 7. S-Group Planes with Completely Connected Points 140

- Definition of S-Group Planes with Completely Connected Points and the Main Theorem 140
- 2. Proper Points on a Line 141
- 3. Germs of Perspective Collineations 144
- 4. The Ideal Incidence Structure of an S-Group Plane with Completely Connected Points 152
- 5. Remarks 155
- 6. Normalizer Planes 157

Chapter 8. Finite S-Groups 162

- 1. Elementary Remarks on Finite S-Groups 162
- 2. Finite S-Group Planes with Completely Connected Points 165
- 3. Finite S-Group Planes with 1-Δ-Connected Points 173
- 4. Remarks 185

CONTENTS xi

Appendix: Affine and Projective Planes 187

- 1. Affine Planes 187
- 2. Projective Planes 189
- 3. Projective Closure of an Affine Plane 192
- 4. Affine Spaces 193
- 5. Perspective Collineations of a Projective Plane 194
- 6. Collineations Induced by Linear Mappings 195
- 7. Projective Reflections 195
- 8. Projective Reflection Groups 196
- 9. Definition of Some Classical Groups 201

Bibliography 203 Index 207