CONTENTS

١.	Some b	asic concepts and developments in Sobolev triples	
	I. CAR	LEMAN OPERATORS	
	1.1.	Some measure theoretical prerequisites	
	1.2.	Carleman operators	8
	1.3.	Operators of Carleman type	1
	1.4.	Strong Carleman operators	19
	Some b	ibliographical notes and comments	2
	II. A	MEASURE THEORETICAL SOBOLEV LEMMA	2
	II.1.		24
		Sobolev triples of Hilbert spaces	28
		Federer measure spaces	3(
		A measure theoretical generalization of the Sobolev	٥,
		embedding theorem	38
	11.5.	Some applications	4.
	Some b	ibliographical notes and comments	50
	III. D	IRAC BASES	5
	111.1.	The concept of Dirac basis	5
	111.2.	Canonical Dirac bases	6
	111.3.	Dirac-Riesz bases	69
	III.4.	Canonical Dirac-Riesz bases	7
	Some b	ibliographical notes and comments	79
	IV. TH	E GENERALIZED EIGENVALUE PROBLEM FOR SELF-ADJOINT OPERATORS	8
	IV.1.	Commutative multiplicity theory	8:
		An application of the measure theoretical Sobolev lemma	90
		A solution	9!
	IV.4.	Some illustrations	10
	Some b	ibliographical notes and comments	10
	V DID	ECT RESOLUTIONS IN SOBOLEV TRIPLES	109
	v. DIR		109
	V.2.	Preliminaries and summary Direct resolutions of the identity	11
	v.2.		
	v.J.	A general construction of a direct resolution	119

xiv Contents

	V.4.	Equivalence classes of direct resolutions,	
		canonical direct resolutions	125
	V.5.	Generalized eigenprojections related to commutative von	
		Neumann algebras	132
	Some b	ibliographical notes and comments	145
3.	A theo	ry of generalized functions	147
	I. ANA	LYTICITY SPACES, TRAJECTORY SPACES AND THEIR DUALITY	149
	I.1.	The analyticity space $S_{\chi,A}$	150
	I.2.	The trajectory space T _{X,A}	163
	I.3.	Pairing and duality of $S_{X,A}$ and $T_{X,A}$	171
	I.4.	Sequence space representation	178
	Some b	ibliographical notes and comments	181
	II. LI	NEAR MAPPINGS, TENSOR PRODUCTS AND KERNEL THEOREMS	183
	II.1.	Continuous linear mappings between analyticity and	
		trajectory spaces	183
	II.2.	Topological tensor products of analyticity and	
		trajectory spaces	193
	11.3.	Kernel theorems	202
	11.4.	Matrix representations	208
	Some b	ibliographical notes and comments	216
	III. I	LLUSTRATIONS OF ANALYTICITY SPACES AND TRAJECTORY SPACES	217
	III.1.	Analyticity spaces based on the Laplacian operator	217
	III.2.	The spaces $S_{lpha}^{oldsymbol{eta}}$ of Gelfand and Shilov	229
	111.3.	Analyticity spaces based on classical polynomials	234
	III.4.	Analyticity spaces related to unitary representations of	
		Lie groups	245
	Some b	ibliographical notes and comments	250
	IV. TH	E CONCEPT OF DIRAC BASIS LIFTED TO TRAJECTORY SPACES	253
		A measure theoretical Sobolev lemma for analyticity spaces	253
		Dirac bases in trajectory spaces	258
		Canonical Dirac bases in trajectory spaces	267
	IV.4.		
		operators solved in the setting of trajectory spaces	271

Contents xv

	Some b	ibliographical notes and comments	280	
С.	A mathematical interpretation of Dirac's formalism			
	I. DIRAC'S FORMALISM ACCORDING TO DIRAC AND ITS RELATIONS WITH			
	LIN	EAR ALGEBRA	285	
	1.1.	Some elementary concepts of linear algebra	285	
	I.2.	Dirac's formalism according to Dirac	291	
	Some b	ibliographical notes and comments	308	
	II. A MATHEMATICAL INTERPRETATION OF DIRAC'S BRACKET FORMALISM		309	
	i.	Kets	310	
	ii.	Bras	313	
	iii.	Brackets	316	
	iv.	Linear operators	321	
	v.	Dirac bases	325	
	vi.	Representatives of kets and bras	332	
	vii.	Representatives of linear operators	338	
	viii.	Observables	351	
	ix.	The harmonic oscillator	353	
	х.	Angular momenta	359	
	Some b	ibliographical notes and comments	365	
	III. T	HE FREE FIELD OPERATOR FORMALISM	367	
	III.1.	The Fock space	376	
	III.2.	Required mathematical tools	389	
	III.3.	Annihilation and creation operators	400	
	III.4.	The free field formalism	406	
	Some b	ibliographical notes and comments	413	
	REFERE	INCES	417	
	INDEX		425	
	LIST C	DE SYMBOLS	429	