Table of Contents

Preface

T	T .	•	. •	_
I.	Intro	duct	ion	1

II.	Statement	of	\mathbf{the}	inverse	problems	3
-----	-----------	----	----------------	---------	----------	---

- §1. Inverse scattering by a potential 3
- §2. Inverse scattering by an inhomogeneity 12
- §3. Inverse scattering by an obstacle 18
- §4. Inverse source problems 19
- §5. Some inverse problems for elliptic, parabolic and hyperbolic equations 23
- §6. Phase retrieval problem (PRP) 27
- §7. Applications 27

III. Uniqueness theorems 31

- §1. A general method based on completeness of the set of products of solutions to PDE: property C=31
- §2. Property C for some PDE with variable coefficients 45
- §3. Uniqueness theorems for inverse scattering by a potential

61

- §4. Uniqueness of the solution to impedance tomography problem 72
- §5. Uniqueness theorems for inverse spectral problems 81
- §6. Uniqueness theorems for inverse scattering by inhomogeneities 85
- §7. Some inverse problems for a layered medium 91
- §8. Uniqueness theorems for inverse scattering by obstacles 99
- §9. Uniqueness theorems for an inverse problem for hyperbolic equations 100
- §10. Uniqueness theorems for inverse problems for Maxwell's equations 106

§11. Some L^s estimates and their applications to uniqueness

problems 112

IV.	Ana	lytical solution to some inverse problems 116				
	§1.	Inversion of fixed-frequency scattering data 116				
	§2 .	Inversion of fixed-frequency surface data 124				
	§3.	Reconstruction of the surface from high-frequency scattering data 126				
	§4 .	Necessary and sufficient conditions for scatterers to be spherically symmetric 130				
	§ 5.	Inversion of low-frequency data 136				
	§6.	Continuation of the data 162				
v.	Numerical methods for solving inverse problems 166					
	§1 .	Numerical method for inverse potential scattering with fixed-energy data 166				
	§2 .	Numerical methods for inverse scattering by obstacles 178				
	§3.	Numerical methods for inverse scattering by inhomogeneities 189				
	§4 .	Analysis of and error estimates for the Born inversion 190				
	§5.	Numerical methods for inverse potential scattering based on recovery of the Dirichlet-to-Neumann map 196				
VI.	Rela	ated problems of signal processing 201				
	§1.	Recovery of signals from incomplete and noisy data 201				
	§2.	Recovery of signals from discrete and noisy data 209				
	§3.	Inversion of the Laplace transform 218				
	§4.	Inversion of the Radon transform with incomplete data 222				
VII.	Thre	ee-dimensional inverse scattering problems 230				
	§1 .	Reconstruction procedure based on a Marchenko equation 230				
	§2 .	Other reconstruction procedures 233				
	§3.	Characterization of the scattering data 234				
	§4.	Algorithmically verifiable characterization of the scattering				
		data and solution to the inverse scattering problem for small potentials 241				
	§5.	Characterization of the scattering data in the inverse problem				
		of scattering by obstacles 247				
VIII	. One	e-dimensional inverse problems 249				

Inverse spectral problems 249

Inverse scattering on a half-line 263

§1. §2.

	ვა.	inverse scattering on the whole line 284
	§4 .	Inversion of the I-function 288
	$\S 5$.	The inverse problem on a finite interval 292
	§6.	The inverse nodal problem 294
	§7.	Numerical solutions of inverse problems 296
•	_	er results 303
	§1.	Inverse source problems 303

TX.

- §2. Phase retrieval problem (PRP) 313
- Carleman estimates and inverse problems **§3**.
- An integral geometry problem and the uniqueness of the **ξ4**. solution to some Darboux and Goursat type problems

Appendix 1: Low frequency asymptotics

- §1. Introduction 324
- Integral equation method for the Dirichlet problem **ξ2**.
- Integral equation method for the Neumann problem **§3**.
- **§4**. The Robin problem
- The method based on the Fredholm property **§**5.
- The method based on the maximum principle **ξ6.** 345

Appendix 2: Stability of the solution to the 3D fixed-energy inverse scattering problem 349

- §1. Introduction 349
- §2. Stability estimates 353
- Stability estimates for exact data **&3.**

Open problems 355

Bibliographical notes

List of symbols

Table of inverse problems 363

References 365