CONTENTS

INTRODUCTION 1

- 1. The inverse of a nonsingular matrix 1
- 2. Generalized inverses of matrices 1
- 3. Illustration: Solvability of linear systems 2
- 4. Diversity of generalized inverses 3
- 5. Preparation expected of the reader 4
- 6. Historical note 4
- 7. Remarks on notation 5

1. EXISTENCE AND CONSTRUCTION OF GENERALIZED INVERSES 7

- 1. The Penrose equations 7
- 2. Existence and construction of {1}-inverses 8
- 3. Properties of {1}-inverses 11
- 4. Bases for the range and null space of a matrix 14
- 5. Existence and construction of {1,2}-inverses 18
- Existence and construction of {1,2,3}-, {1,2,4}-, and {1,2,3,4}-inverses 20
- 7. Full-rank factorizations 22
- 8. Explicit formula for A[†] 23
- 9. Construction of {2}-inverses of prescribed rank 25
- 10. An application of {2}-inverses in iterative methods for solving nonlinear equations 27

2. LINEAR SYSTEMS AND CHARACTERIZATION OF GENERALIZED INVERSES 39

- 1. Solution of linear systems 39
- 2. Characterization of A{1,3} and A{1,4} 43
- 3. Characterization of $A\{2\}$, $A\{1,2\}$ and other subsets of $A\{2\}$ 46
- 4. Idempotent matrices and projectors 48
- 5. Generalized inverses with prescribed range and null space 58

- 6. Orthogonal projections and orthogonal projectors 63
- 7. Efficient characterization of classes of generalized inverses 77
- 8. Restricted generalized inverses 81
- 9. The Bott-Duffin inverse 86
- 10. An application of {1}-inverses in interval linear programming 90
- 11. A {1,2}-inverse for the integral solution of linear equations 93
- 12. An application of the Bott-Duffin inverse to electrical networks 96

3. MINIMAL PROPERTIES OF GENERALIZED INVERSES 103

- 1. Least-squares solutions of inconsistent linear systems 103
- 2. Solutions of minimum norm 113
- 3. Weighted generalized inverses 121
- 4. Essentially strictly convex norms and the associated projectors and generalized inverses 128
- 5. An extremal property of the Bott-Duffin inverse with application to electrical networks 155

4. SPECTRAL GENERALIZED INVERSES 159

- 1. Introduction 159
- 2. Spectral properties of a nonsingular matrix 160
- 3. Spectral inverse of a diagonable matrix 161
- 4. The group inverse 162
- 5. Spectral properties of the group inverse 166
- 6. The Drazin pseudoinverse. Index of a square matrix 169
- 7. Spectral properties of the Drazin pseudoinverse 175
- 8. Index 1-nilpotent decomposition of a square matrix 175
- 9. Quasi-commuting inverse 178
- 10. Other spectral generalized inverses 179

5. GENERALIZED INVERSES OF PARTITIONED MATRICES 186

- 1. Introduction 186
- 2. Partitioned matrices and linear equations 187
- 3. Intersection of manifolds 197
- 4. Common solutions of linear equations and generalized inverses of partitioned matrices 208
- 5. Greville's method and related results 219
- 6. Generalized inverses of bordered matrices 228

CONTENTS

6. A SPECTRAL THEORY FOR RECTANGULAR MATRICES 233

- 1. Introduction 233
- 2. The UDV* decomposition 242
- 3. Partial isometries and the polar decomposition theorem 252
- 4. A spectral theory for rectangular matrices 270

7. COMPUTATIONAL ASPECTS OF GENERALIZED INVERSES 283

- 1. Introduction 283
- 2. Computation of unrestricted {1}-inverses and {1,2}-inverses 284
- 3. Computation of unrestricted {1,3}-inverses 285
- 4. Computation of {2}-inverses with prescribed range and null space 287
- 5. Iterative methods for computing A[†] 290

8. GENERALIZED INVERSES OF LINEAR OPERATORS BETWEEN HILBERT SPACES 306

- 1. Introduction 306
- 2. Hilbert spaces and operators: Preliminaries and notation 307
- 3. Generalized inverses of linear operators between Hilbert spaces 314
- 4. Minimal properties of generalized inverses 342
- 5. Series and integral representations and iterative computation of generalized inverses 351

BIBLIOGRAPHY 359

GLOSSARY OF SYMBOLS 383

AUTHOR INDEX 387

SUBJECT INDEX 393