CONTENTS

1.	Introduction	
	General remarks	1
	Dual sequence spaces	2
2.	Notation and terminology	3
	Standard sequence spaces	3
	Group norms	5
	Generalized Köthe-Toeplitz duals; matrix classes	8
	Theorems of Kojima-Schur, Toeplitz, Schur	10
	Theorem of Crone	15
	Strong summability	17
	Abel, Cesaro, Nörlund summability	18
3.	Generalized Köthe-Toeplitz duals	19
	$c_{o}^{\beta}(x)$	19
	$c^{\beta}(x)$	20
	$\ell_{\infty}^{\beta}(\mathbf{x})$	21
	$c_{o}^{\alpha}(x)$	23
	$\ell_1(B(X,Y)) \subset \ell_\infty^\beta(X)$	24
	$\ell_{\mathbf{p}}^{\beta}(\mathbf{x})$, $0 < \mathbf{p} \le 1$	26
	$\ell_p^{\beta}(x)$, 1 \infty	27
	$\ell_p^{\alpha}(x)$, 1 \infty	29
	$(A_{k}) \in \ell_{\infty}^{\beta}(X)$ implies ΣA_{k} unconditionally convergent	
	in the uniform operator topology	30
	$w^{\beta}(x)$, 0	31

	$w_{p}^{\alpha}(x)$, $0 , and w_{p}^{\beta}(x), 1 \le p < \infty$	33
4.	Characterization of matrix classes	36
	Theorem of Lorentz-Macphail	36
	Theorem of Robinson on $(c(X), c(Y))$	38
	Theorem of Toeplitz for operators	40
	Theorem of Steinhaus for operators	41
	Sum preserving series to sequence maps	43
	Theorem of Schur for operators	46
	$pA \leq Mp \text{ on } \ell_{\infty}(X)$	51
	$(l_{\infty}(X), c_{O}(Y))$, and $(l_{1}(X), l_{p}(Y))$, $1 \le p < \infty$	53
	$(\ell_1(X), \ell_{\infty}(Y))$	55
	The space $D = \bigoplus_{i=1}^{n} H_{i}$	56
	Theorem of Crone for operators	61
	<pre>(w_p(X),c(Y)); Theorem of Kuttner for operators</pre>	63
5.	Tauberian theorems	65
	Theorems of Tauber and Hardy	65
	Theorem of Littlewood; the Tauberian condition $\sup_{n \in \mathbb{N}} \left a_n \right < \infty$ in a Banach space	66
	Theorem of Northcott	67
	A Tauberian theorem for regular additive summability methods	72
	A regular method for which $na_n \rightarrow 0$ is a Tauberian condition	
	but na → m is not	74
	A generalization of Tauber's second theorem	78
	A Tauberian theorem in l_p (0 < p < 1)	80
6.	Consistency theorems	84
	E-consistency of operator matrices	84

85

Consistency is not an equivalence relation

	Classicial bounded consistency theorem; Petersen's approach	86
	Mazur-Orlicz bounded consistency theorem	91
	Zeller's approach	92
	Theorem of Copping on conull matrices	93
	Form of c*(X) and c*(X)	94
	Two-norm spaces, $\gamma\text{-convergence, completeness,density,}$ continuity; lower semicontinuity; the $\boldsymbol{\Sigma}_1$ postulate	96
	Finite sequences γ -dense in $\ell_{\infty}(X)$ \cap (A)	99
	The Alexiewicz-Orlicz bounded consistency theorem for operators	105
,	Or analysis Nümburd Tooms	106
7.	Operator Nörlund means	100
	(N,q,X) summability	106
	Means with equal summability fields	107
	A theorem of consistency	109
	Exact conditions for $c(X) = (N,q,X)$	111
	A consistency theorem for regular operator Nörlund means	113
	An open question on regular complex means	114
	Consistency of regular real Nörlund means	115
	Bibliography	117
	Light of symbols	122

List of symbols