CONTENTS

FOREWORD	vii
PREFACE	ix
INDUCED METRICS AND OPERATOR COLLIGATIONS	1
§1. Polymetric Spaces and Inductors	1
§2. Monometric Inductors	4
§3. Operator Colligations	6
§4. Product of Local Colligations	9
DIFFERENTIATION AND INTEGRATION OF COLLIGATIONS	13
§1. Differentiation of Inductors	13
§2. Differentiation of Families of Metric Colligations	18
§3. Integration of Local Colligations	22
THE ASSOCIATED OPEN SYSTEMS	31
§1. The Equations of Open Systems	31
§2. Coupling and Decomposition of Open Systems	37
§3. General Linear Systems and Their Connection with	
Associated Open Systems	40
§4. Reimannian Geometry and Tensor Colligations	44

vi CONTENTS

THE CHARACTERISTIC OPERATOR FUNCTION	59
§ 1. The Characteristic Operator Function of a Vector	
Local Colligation	59
§2. Operator Complexes	61
§3. A Theorem on the Unitary Equivalence of Local	
Colligations	65
§4. Quasi-Hermitian Colligations	71
§ 5. Elementary Dissipative Complexes	74
TRIANGULAR AND UNIVERSAL MODELS OF	
LINEAR OPERATORS	79
§ 1. Operators of Non-Mermitian Rank One	79
§ 2. Operators of Arbitrary Non-Mermitian Rank	91
83. Complete Dissipative Operators and Complexes	98
§4. Universal Models of Complete Dissipative Complexes	100
§5. A Universal Model with Spectrum at the Origin	103
§6. The Asymptotic Stability of Some Classes of	100
Differential Equations in Hilbert Space	105
STOCHASTIC FIELDS AND STOCHASTIC PROCESSES	107
§1. Basic Concepts	107
82. Homogeneous Stochastic Fields and Stationary	
Stochastic Processes	110
§3. Gaussian Stochastic Processes	115
§4. Stochastic Open Systems	116
DISSIPATIVE PROCESSES OF FINITE RANK	121
81. Dissipative Stochastic Processes	121
32. Complete Dissipative Processes of Rank One	124
83. Finite-Dimensional Dissipative Processes of Rank One	128
84. Complete Dissipative Processes of Finite Rank	130
83. Dissipative Processes of Rank One with Spectrum	
at the Origin	133
30. Dissipative Processes of Finite Rank with Spectrum	
at the Origin	135

CONTENTS	vii

SPECTRAL RESOLUTIONS OF NONSTATIONARY PROCESSES	137
§1. Complete Processes of Finite Rank	137
§ 2. Spectral Resolutions of Stochastic Processes of Class C_r	144
INVARIANT OPERATOR COLLIGATIONS	153
§1. Auxiliary Concepts	153
§2. Invariance Criteria for Operator Colligations	156
§3. Product of Invariant Operator Colligations	164
§4. Indecomposable Operators	167
§ 5. Preinvariant Operator Colligations Containing	
a given Operator A and Bimodule $H_{\widetilde{U},\ U}$	172
WEYL FAMILIES OF OPERATOR COLLIGATIONS AND	
THEIR CORRESPONDING OPEN FIELDS	181
§1. Basic Concepts	181
§2. Decomposition of an Invariant Family of Colligations	188
§3. Weyl Families of Operator Colligations	190
§4. The Characteristic Operator Function of a Weyl Family	
of Colligations	196
BIBLIOGRAPHY	201
INDEX	207