Contents

Preface	ix
Basic notation	1
Introduction	5
CHAPTER 1. Preliminary Facts	13
§1. Measure theory	13
§2. Analytic functions	17
§3. Absolutely continuous and singular spectra	22
§4. Functions of a selfadjoint operator: the unitary group and	
resolvent	28
§5. Decomposition into a direct integral	31
§6. Classes of compact operators	35
§7. The trace and determinant	41
§8. The analytic Fredholm alternative	45
§9. The resolvent equation	49
§10. Conditions for selfadjointness	54
§11. Unitary operators. Perturbation theory	60
CHAPTER 2. Basic Concepts of Scattering Theory	67
§1. Wave operators (WO)	67
§2. Various modifications of the concept of WO (weak, local,	
Abelian WO, etc.)	73
§3. Completeness of WO	77
§4. The scattering operator and matrix. An elementary example	82
§5. Existence of WO. Cook's criterion	84
§6. Birman's invariance principle (IP)	86
§7. The stationary approach. Formulas for the WO	91
§8. Stationary representations for the scattering operator and matrix	94
CHAPTER 3. Further Properties of the WO	97
§1. Perturbation by the boundary condition	97
§2. 3-completeness	103
§3. Scattering for multiplicative perturbations	106

vi CONTENTS

§4. Equations of second order in time	107
§5. IP for Abelian WO	109
CHAPTER 4. Scattering for Relatively Smooth Perturbations	113
§1. The Friedrichs-Faddeev model	114
§2. Scattering in the Friedrichs-Faddeev model	122
§3. Kato smoothness	128
§4. Sufficient conditions for smoothness	135
§5. The WO for smooth perturbations	138
§6. Smoothness with respect to the full Hamiltonian	143
§7. The absolutely continuous and point spectra of the operator I	
CHAPTER 5. The General Scheme in Stationary Scattering Theory	153
§1. Weak smoothness	153
§2. Justification of the stationary method	157
§3. Connection with the time-dependent approach. IP	164
§4. Integral operators in direct decompositions	169
§5. The scattering matrix	174
§6. The decomposition theorem	178
§7. Scattering for relatively compact perturbations	181
§8. A local version of the stationary scheme	183
CHAPTER 6. Scattering for Perturbations of Trace Class Type	187
§1. Weak smoothness of Hilbert-Schmidt operators	187
§2. The Kato-Rosenblum theorem. "Negative" results	193
§3. Time-dependent proofs	196
§4. Local criteria for the existence of the WO	203
§5. Further generalizations	210
§6. An example. Perturbation by an integral operator of Fourier	
type	215
§7. One-dimensional perturbation	219
§8. Double Stieltjes operator integrals	225
CHAPTER 7. Properties of the Scattering Matrix (SM)	229
§1. The multiplication theorem for scattering operators and	
scattering matrices	229
§2. The invariance principle for SM. The SM in the unitary case	232
33. Stationary representations for the WO and the scattering	
operator	236
§4. The SM for smooth perturbations	239
§5. Trace class integral operators	241
§6. The SM for trace class perturbations	246
§7. The structure of the stationary representation of the SM	250
§8. The spectrum of the SM for perturbations of definite sign	256
§9. The scattering cross section. Upper bounds	260

CONTENTS	vii

CHAPTER 8. The Spectral Shift Function (SSF) and the Trace	
Formula	265
§1. The perturbation determinant	265
§2. The SSF in the selfadjoint case. Trace class perturbation	271
§3. The trace formula of M. G. Krein	276
§4. Connection with the scattering matrix. The Birman-Krein	
formula	282
§5. The SSF in the unitary case	285
§6. Continuity of the SSF with respect to an operator parameter.	
Multivaluedness	292
§7. The SSF in the selfadjoint case. Resolvent comparable	
operators	297
§8. The SSF in the selfadjoint case. Refinement of results	303
§9. The SSF for semibounded operators	306
§10. The SSF for perturbations of definite sign	309
§11. Further information on the SSF	316
Review of the literature	325
Bibliography	333
Subject index	339