Contents

1.	Sta	ability and approximation	1
	1.1	Lower estimates derived from the Riesz-Dunford functional calculus	2
	1.2	Lower estimates for the distance to $\mathcal{N}_k(\mathcal{X})$	7
	1.3	Lower semicontinuity of the rank	8
	1.4	Stability properties of semi-Fredholm operators	9
	1.5	On invariance and closure of subsets of $\mathcal{L}(\mathcal{X})$	11
	1.6	Notes and remarks	11
2.	An	apéritif: Approximation problems in finite dimensional spaces	13
	2.1	Closures of similarity orbits in finite dimensional spaces	14
		2.1.1 The nilpotent case	16
		2.1.2 Proof of Theorem 2.1	17
		2.1.3 The lattice $(\mathcal{N}(\mathbf{C}^k)/\#,<)$	18
		2.1.4 Closures of similarity orbits of finite rank operators	20
	2.2	The distance from the set of all non-zero orthogonal projections to $\mathcal{N}(\mathcal{X})$	21
		2.2.1 The limit case	21
		2.2.2 On the exact values of δ_k and η_k	25
		2.2.3 A companion problem: the distance from the set of all non-zero	
		idempotents to $\mathcal{N}(\mathcal{X})$	26
	2.3	On the distance to $\mathcal{N}_k(\mathcal{X})$	30
		2.3.1 A general upper bound	30
		2.3.2 Two illustrative examples	32
		2.3.3 An example on approximation of normal operators by nilpotents	35
		2.3.4 On the distance to a similarity orbit	38
	2.4	On the distance from a compact operator to $\mathcal{N}(\mathcal{X})$	10
	2.5	Notes and remarks	11
3.	The	e main tools of approximation	18
	3.1	The Rosenblum operator: $X \rightarrow AX - XB$	18
		3.1.1 Linear operator equations	18
		3.1.2 Approximate point spectrum of a sum of commuting operators	1 9
		3.1.3 Local one-side resolvents in $\mathcal{L}(\mathcal{H})$	52
		3.1.4 The left and the right spectra of $ au_{AB}$	58
		3.1.5 Rosenblum-Davis-Rosenthal corollary	31
		3.1.6 The maximal numerical range of an operator	32
		3.1.7 The norm of τ_{AB}	35
		3.1.7 The norm of τ_{AB}	

	3.2	Generalized Rota's universal model	67
		Apostol's triangular representation	
		Correction by compact perturbations of the singular behavior of operators .	
		Apostol-Foiaş-Voiculescu's theorem on normal restrictions of compact	
		perturbations of operators	88
		3.5.1 Schatten <i>p</i> -classes	
		3.5.2 Normal restrictions	
		3.5.3 Density of sets of operators with bad properties	
	3.6	Notes and remarks	
4.		o results borrowed from the theory of C^* -algebras $\ldots \ldots \ldots \ldots$	
		Essentially normal operators	
		4.1.1 Brown-Douglas-Fillmore theorem	
		4 1 0 TO C1	00
		410 F	04
		4 4 4 4 11 41 4 4 4 4 4 4 4 4 4 4 4 4 4	06
	4.2		07
			10
		37 * 1	12
	4.5		14
			14
		450.0	16
			17
	4.6	T 1 111	19
		AT . 1	21
5.			30
			30
		Mark 37 11 to A to A	30
			33
	5.2		35
			36
		AT 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	37
			39
			42
			 47
			51

	5.10	O Notes and remarks	5
6.	Qua	asitriangularity	3
	6.1	Apostol-Morrel simple models	3
	6.2	Quasitriangular operators	3
		6.2.1 Equivalence between the formal and the relaxed definitions of	
		quasitriangularity	1
		6.2.2 Two lower estimates for the distance to (QT)	5
		6.2.3 Spectral characterization of quasitriangularity)
	6.3	Biquasitriangular operators)
		6.3.1 Block-diagonal and quasidiagonal operators)
		6.3.2 Characterizations of biquasitriangularity	L
	6.4	On the relative size of the sets (QT) , $(QT)^*$, (BQT) ,	
		$[\mathcal{N}(\mathcal{H}) + \mathcal{K}(\mathcal{H})]$ and $\mathcal{N}(\mathcal{H})^-$	7
	6.5	A Riesz decomposition theorem for operators with disconnected essential	
		spectrum	3
	6.6	Notes and remarks	L
7.	The	e structure of a polynomially compact operator	3
	7.1	Reduction to the (essentially) nilpotent case	3
	7.2	The structure of a polynomially compact operator	5
	7.3	Restrictions of nilpotent operators)
	7.4	Operators similar to Jordan operators	2
	7.5	A similarity invariant for polynomially compact operators 205	5
	7.6	Nice Jordan operators	•
	7.7	Notes and remarks)
8.	Clo	sures of similarity orbits of nilpotent operators	ı
	8.1	Universal operators	1
		8.1.1 Universal quasinilpotent operators	1
		8.1.2 Universal compact quasinilpotent operators	3
	8.2	Compact perturbations of not nice operators	3
	8.3	Quasinilpotents in the Calkin algebra)
		8.3.1 General quasinilpotents)
		8.3.2 Nice elements of the Calkin algebra	7
	8.4	Compact perturbations of nice Jordan operators	3
		8.4.1 Nice Jordan nilpotents	9
		8.4.2 Nilpotents of order 2	3
		8.4.3 Quasinilpotent perturbations	1

33
70
73
73
74
74
76
76
78
79
30
30
32
37
39
39

SYMBOLS AND NOTATION

8.5 Separation of isolated points of the essential spectrum affiliated with