Contents

CH	AD	TER	1
СΠ	Αг	1 CK	- 1

O,	therail racts About Probability Distributions	
§1.	Probability Spaces	
	1. Measurable Spaces	
	2. Distributions and Measures	
	3. Probability Spaces	
§2.	Conditional Distributions	1.
	1. Conditional Expectation	1
	2. Conditional Probability Distributions	1
§3.	Zero-One Laws. Regularity	19
	1. Zero-One Law	1
	2. Decomposition Into Regular Components	2
§4.	Consistent Conditional Distributions	2:
	1. Consistent Conditional Distributions for a Given Probability Measure	22
	2. Probability Measures with Given Conditional Distributions	23
	3. Construction of Consistent Conditional Distributions	2
§5.	Gaussian Probability Distributions	36
	1. Basic Definitions and Examples	30
	2. Some Useful Propositions	4
	3. Gaussian Linear Functionals on Countably-Normed Hilbert Spaces	43
	4. Polynomials of Gaussian Variables and Their Conditional Expectations	4
	5. Hermite Polynomials and Multiple Stochastic Integrals	51
СН	APTER 2	
Ma	arkov Random Fields	55
. .		55
21.	Basic Definitions and Useful Propositions	
	1. Splitting σ-algebras	55
	2. Markov Random Processes	58

viii Contents

	3. Random Fields; Markov Property	62
	4. Transformations of Distributions which Preserve the Markov Property. Additive Functionals	69
82.	Stopping σ -algebras. Random Sets and the Strong Markov	09
3	Property	74
	1. Stopping σ -algebras	74
	2. Random Sets	79
	3. Compatible Random Sets	82
	4. Strong Markov Property	85
§3.	Gaussian Fields. Markov Behavior in the Wide Sense	92
	1. Gaussian Random Fields	92
	2. Splitting Spaces	93
	3. Markov Property	95
	4. Orthogonal Random Fields	98
	5. Dual Fields. A Markov Criterion	99
	6. Regularity Condition. Decomposition of a Markov Field into Regular	100
	and Singular Components	100
CH	APTER 3	
Th	e Markov Property for Generalized Random	
	inctions	102
		103
81.	Biorthogonal Generalized Functions and the Duality Property	103
	The Meaning of Biorthogonality for Generalized Functions in Hilbert Space	100
	2. Duality of Biorthogonal Functions	103
	3. The Markov Property for Generalized Functions	106 112
82	Stationary Generalized Functions	112
3	Spectral Representation of Coupled Stationary Generalized Functions	_
	2. Biorthogonal Stationary Functions	113 117
	3. The Duality Condition and a Markov Criterion	119
§3.	Biorthogonal Generalized Functions Given by a Differential	117
	Form	122
	1. Basic Definitions	122
	2. Conditions for Markov Behavior	125
§4.	Markov Random Functions Generated by Elliptic Differential	120
	Forms	129
	1. Levy Brownian Motion	129
	2. Structure of Spaces for Given Elliptic Forms	133
	3. Boundary Conditions	139
	4. Regularity and the Dirichlet Problem	145
§5.	Stochastic Differential Equations	150
	1. Markov Transformations of "White Noise"	150
	2. The Interpolation and Extrapolation Problems	155
	3. The Brownian Sheet	157

157

Contents	ix

CHAPTER 4	
Vector-Valued Stationary Functions	163
§1. Conditions for Existence of the Dual Field	163
1. Spectral Properties	163
2. Duality	166
§2. The Markov Property for Stationary Functions	173
1. The Markov Property When a Dual Field Exists	173
2. Analytic Markov Conditions	175
§3. Markov Extensions of Random Processes	180
1. Minimal Nonanticipating Extension	180
2. Markov Stationary Processes	182
3. Stationary Processes with Symmetric Spectra	186
Notes	191
Bibliography	195
Index	199