Contents | Introduction | xii | |--|----------------| | Part I: Control on a Finite Time Interval | 1 | | Chaper 1. Finite and Denumerable Models | 3 | | \$1. Deterministic Controlled Processes | 3
8
15 | | Strategies | 18
19 | | Problem for the Derived Model | 20 | | Optimal Strategies | 23
25
27 | | §10. The Bus, Streetcar, or Walk Problem | 27
33 | | §12. Countable Models: Optimality Equations and ε-Optimal Strategies | 35
39 | | Chapter 2. Semicontinuous Models | 44 | | \$1. On the Concept of Measurability | 44
45 | | in the Study of Finite and Countable Models? | 48
50 | | \$5. Optimality Equations and Simple Optimal Strategies | 53
57 | | Consumption | 61 | | | Contents | |--|----------| |--|----------| X | §8. The Water Regulation Problem | 64
66 | |--|--| | §10. The Problem of Allocation of a Resource Among Consumption and Several Productive Sectors | 74
76 | | Chapter 3. General (Borel) Models | 79 | | \$1. Introduction. The Main Results | 79
83
87
87
91 | | §6. Universal Measurability of the Value of the Model and Almost-Surely (a.s.) ε-Optimal Strategies | 92
94
96
98 | | Part II: Control on an Infinite Time Interval | 101 | | Chapter 4. Discrete Models | 103 | | \$1. Passage to an Infinite Interval of Control \$2. Summable Models . \$3. The Fundamental Equation \$4. Uniformly ε-Optimal Strategies \$5. Optimality Equations \$6. An Expression for the Value of a Model \$7. Simple ε-Optimal Strategies \$8. Sufficiency of Markov and Simple Strategies | 103
103
105
107
110
112
114
118 | | Chapter 5. Borel Models | 121 | | \$1. The Main Results | 121
122
126
128 | | of a.s. ε-Optimal Strategies | 129
130 | | Chapter 6. Homogeneous Models | 133 | | §1. Introduction | 133
134
137 | | хi | |----| | | | §4. The Bus, Streetcar, or Walk Problem | 140 | |--|------------| | | 143 | | | 147 | | | 150 | | | 153 | | §9. Allocation of a Resource Between Production and | | | | 155 | | | 159 | | §11. Allocation of a Resource Among Consumption and Several | | | | 160 | | | 162 | | Chapter 7. Maximization of the Average Reward Per Unit Time | 165 | | §1. Introduction. Canonical Strategies | 165 | | _ i | 167 | | | 169 | | | 172 | | | 173 | | | 174 | | §7. Increase of the Discounted Reward with the Howard | 1/4 | | ~ ~ | 176 | | - · · · · · · · · · · · · · · · · · · · | 176
178 | | §8. Extension to Infinite Models | 1/0 | | | 104 | | | 184 | | | 186 | | | 188 | | 912. The Stabilization Problem | 193 | | §13. Models with Finitely Many States and Infinite Action Sets | 195 | | | | | Part III: Some Applications | 199 | | Chapter 8. Models with Incomplete Information | 201 | | §1. Description of the Model | 201 | | §2. Reduction to a Model with Complete Information. The | | | | 202 | | V | 209 | | §4. Reduction to a Model with Complete Information. The | | | | 214 | | §5. The Stabilization Problem | 217 | | Chapter 9. Concave Models. Models of Economic Development | 222 | | | | | | 222 | | §2. Concave Models | 223 | | | | | xii | | | | | Con | tents | |--|----|---|---|---|-----|---------------------------------| | §3. The Spaces \mathscr{L} | | | | | | 226
230
232 | | Appendix 1: Borel Spaces | | | | | | 239 | | §1. Introduction | | • | | | • | 239
240 | | Uncountable Borel Space | • | • | • | • | • | 241 | | Dyadic Sequences | | | | • | • | 244 | | Appendix 2: Analytic Sets | | | | | | 246 | | \$1. Introduction | | | | | · | 246
247
248
250
251 | | Appendix 3: Theorems on Measurable Selection | | | | | | 254 | | \$1. The Lemma of Yankov \$2. The Theorem of Blackwell and Ryll-Nardzewski \$3. Example of a Correspondence Not Admitting a Measurab Selection | | | | | | 254
255
256 | | Appendix 4: Conditional Distributions | | | | | | 258 | | \$1. Introduction | | | | | | 258
259
261
262 | | Appendix 5: Some Lemmas on Measurability | | | | | | 265 | | §1. The Lemma on Multiplicative Systems§2. Measurable Structure in the Space of Probability Measure | es | • | | | | 265
266 | | Historical-Bibliographical Notes | | | | | | 267 | | Bibliography | | | | | | 275 | | Index | | | | | | 287 |