CONTENTS

	Ba	sic notation	xvii		
I.	Li	Linear operators in Banach spaces			
		Compact linear maps	1		
		Measures of non-compactness	12		
		Fredholm and semi-Fredholm maps	27		
		The essential spectrum	39		
II.	En	tropy numbers, s-numbers, and eigenvalues	46		
		Entropy numbers	47		
	2.	••	53		
	3.	An axiomatic approach to s-numbers	71		
		Non-compact maps	77		
	5.	Compact linear operators in Hilbert spaces	80		
III.	Uı	nbounded linear operators	95		
		Closed and closable operators	95		
	2.		99		
	3.		101		
	4.		107		
		4.1. General remarks	107		
		4.2. Symmetric and self-adjoint extensions of symmetric operators	110		
	5.	J-symmetric and J-self-adjoint operators	114		
		5.1: General remarks	114		
		5.2. J-self-adjoint and regularly solvable extensions of			
		J-symmetric operators	116		
		Accretive and sectorial operators	119		
	7.	Relative boundedness and relative compactness	122		
	8.	Stability results	127		
	9.	Multiplication operators	133		
	10.	Second-order linear differential operators	135		
		10.1. Quasi-differential equations	135		
		10.2. The regular problem on $[a,b]$	137		
		10.3. The case of one singular end-point	144		
		10.4. The case of two singular end-points	155		
		10.5. The limit-point, limit-circle results of Sims	158		
		10.6. Examples	162		
IV.	Se	esquilinear forms in Hilbert spaces	168		
•	1.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	168		
	2.	Sectorial forms	172		
	3.		180		
	4.		183		

xiv CONTENTS

	5.	Perturbation of sectorial forms	191		
	6.	Variational inequalities	196		
V.	Sobolev spaces 20				
٠.	1.	Function spaces, approximation and regularization	201		
	1.	1.1. Spaces of continuous functions	202		
		1.2. Functions in Lebesgue spaces	204		
		1.3. Partitions of unity	208		
		1.4. The maximal function	209		
		1.5. The Fourier transform	212		
	2		215		
	2. 3.	Weak derivatives	220		
	3.	Sobolev spaces: definitions and basic properties	220		
		3.1. Foundations	227		
		3.2. Embeddings and inequalities for $W_0^{k, p}(\Omega)$	234		
		3.3. More embeddings: continuity properties	241		
		3.4. Poincaré inequalities	243		
	4.	The boundary of Ω	244		
		4.1. Boundaries of class $C^{k,\gamma}$	246		
		4.2. Other conditions on the boundary	248		
		4.3. A density property	250		
		4.4. Extension properties	262		
		4.5. Embedding theorems for $W^{k, p}(\Omega)$	266		
		4.6. More about compact embeddings	269		
		4.7. The Poincaré inequality	270		
		4.8. The approximation of bad boundaries by very smooth ones	272		
	_	4.9. A counterexample	274		
	5.	Measures of non-compactness	275		
		5.1. Bounded and precompact sets in $L^p(\Omega)$ $(1 \le p < \infty)$	213		
		5.2. A formula for $\alpha(I)$ and $\widetilde{\beta}(I)$ $(I: W^{1,p}(\Omega) \to L^p(\Omega),$	277		
		$1 \le p < \infty$	281		
		5.3. The Poincaré inequality and $\alpha(I)$	284		
	4	5.4. Estimates for $\beta(I_0)$ and $\beta(I_0)$	289		
	6.	Embeddings and approximation numbers	209		
VI.	G	eneralized Dirichlet and Neumann boundary-value problems	300		
	1.	Boundary-value problems	300		
	1.	1.1. The weak Dirichlet problem	300		
		1.2. Eigenfunction expansions for the Dirichlet problem	308		
		1.3. The weak Neumann problem	310		
	2.		311		
	3.		315		
	<i>3</i> . 4.		318		
	٠. 5.	Capacity	322		
	٠.		سيد ر		
VII.	Se	cond-order differential operators on arbitrary open sets	326		
	1.	Quasi-m-sectorial Dirichlet and Neumann operators	326		
		1.1. The Dirichlet problem on Ω	327		
		1.2. The Neumann problem on Ω	339		

	1.3. $\tau = -\Delta + q$ with $q \in L_{loc}^{n/2}(\Omega)$ when $n \ge 3$	340	
	1.4. General second-order elliptic operators in $L^2(\Omega; w)$	344	
	1.5. Examples	351	
	2. M-accretive realizations of $\tau = -\Delta + q$	357	
	2.1. Kato's inequality	357	
	2.2. Kato's Theorem	359	
	2.3. Supplementary results	364	
	3. $\tau = -\Delta + q$ with im q semi-bounded	366	
	3.1. Local properties of $\mathcal{D}(T)$	367	
	3.2. Sufficiency conditions for $T_0 = T$	372	
	4. Schrödinger operators with strongly singular potentials	382	
	5. Further remarks on self-adjointness and quantum mechanics	387	
VIII.	Capacity and compactness criteria	389	
	1. Capacity and its basic properties	389	
	2. Some integral inequalities	393	
	3. Compactness criterion for the embedding $W_0^{1,p}(\Omega) \to L^p(\Omega)$	402	
	4. Molcanov's criterion for a discrete spectrum	404	
	5. Continuous representatives of $W^{1,p}(\Omega)$	407	
	6. Density results for $C_0^{\infty}(\Omega)$	410	
IX.	Essential spectra		
	1. General remarks	414	
	2. Invariance of the essential spectra under perturbations	418	
	3. Operators with a compact resolvent	423	
	4. Finite-dimensional extensions	424	
	5. Direct and orthgonal sums of operators	425	
	6. Constant-coefficient operators in $L^2(\mathbb{R}^n)$	429	
	7. Constant-coefficient operators in $L^2(0,\infty)$	434	
	8. Relatively bounded and relatively compact perturbations of		
	constant-coefficient operators	440	
	9. The Decomposition Principle for operators in L^2 (a, ∞)	445	
X.	Essential spectra of general second-order differential operators	454	
	1. A Decomposition Principle	454	
	2. Essential spectra of realizations of $\tau = -\Delta + q$ in L ² (Ω)	458	
	3. Essential spectra of general second-order operators in shells	462	
	4. Perturbation results	466	
	5. A result of Persson	473	
	6. The essential spectrum of $-\Delta_{D,\Omega}$	476	
	6.1. Quasi-conical, quasi-cylindrical, and quasi-bounded domains	477	
	6.2. A mean distance function	481	
XI.	Global and asymptotic estimates for the eigenvalues of $-\Delta + q$		
	when q is real	488	
	1. The Max-Min Principle for semi-bounded self-adjoint operators	489	
	2. Bounds for $N(\lambda, T_D, \Omega)$ and $N(\lambda, T_N, \Omega)$	495	
	2.1. The operators $T_{\mathbf{D},\mathbf{Q}}$ and $T_{\mathbf{N},\mathbf{Q}}$	495	
	2.2. Variation of eigenvalues	498	

		2.3. The eigenvalues of $-\Delta_{D,O}$ and $-\Delta_{N,O}$	500
		2.4. The main estimates	505
	3.	The case $\lambda \to \infty$: an example	508
	4.	The case $\lambda \to 0-$: an example	514
		4.1. The tesselation	515
		4.2. The spectrum	519
	5.	The case $\Omega = \mathbb{R}^n, q \in L^{n/2}(\mathbb{R}^n), n \ge 3$	526
XII.	Es	timates for the singular values of $-\Delta + q$ when q is complex	535
	1.	Introduction	535
	2.	Bounds for $M(\lambda, T_D, \Omega)$ and $M(\lambda, T_N, \Omega)$	536
		2.1. The Dirichlet and Neumann operators	536
		2.2. A lower bound for $M(\lambda, T_D, \Omega)$	538
		2.3. An upper bound for $M(\lambda, T_D, \Omega)$	543
	3.	Asymptotic results for $\lambda \to \infty$	547
	4.	The l^p classes of the singular values and eigenvalues	552
	5.	Perturbation results	554
Biblio	Bibliography		556
Notat	Notation Index		
Author Index			569 571