TABLE OF CONTENTS

Chapter	0. Introductory discussions	1
0.0.	Some special notations, used in the book	1
0.1.	The Fourier transform; elementary facts	3
0.2.	Fourier analysis for temperate distributions on \mathbb{R}^n	9
0.3.	The Paley-Wiener theorem; Fourier transform for	
	general u∈ D'	1 4
0.4.	The Fourier-Laplace method; examples	20
0.5.	Abstract solutions and hypo-ellipticity	30
0.6.	Exponentiating a first order linear differential	
	operator	3 1
0.7.	Solving a nonlinear first order partial differen-	
	tial equation	36
0.8.	Characteristics and bicharacteristics of a linear	
	PDE	40
0.9.	Lie groups and Lie algebras for classical analysts	45
Chapter	1. Calculus of pseudodifferential operators	52
1.0.	Introduction	52
1.1.	Definition of wdo's	52
1.2.	Elementary properties of wdo's	56
1.3.	Hoermander symbols; Weyl wdo's; distribution	
	kernels	60
1.4.	The composition formulas of Beals	64
1.5.	The Leibniz' formulas with integral remainder	69
1.6.	Calculus of ydo's for symbols of Hoermander type	72
1.7.	Strictly classical symbols; some lemmata for	
	application	78
Chapter	2. Elliptic operators and parametrices in $\mathbf{R}^{\mathbf{n}}$	8
2.0.	Introduction	8
2.1.	Elliptic and md-elliptic \psido's	82
2.2.	Formally hypo-elliptic ψdo's	8
2.3.	Local md-ellipticity and local md-hypo-ellipticity	8
2.4.	Formally hypo-elliptic differential expressions	9
2.5.	The wave front set and its invariance under wdo's	9

viii Contents

2.6. Systems of ψdo's	97
Chapter 3. L ² -Sobolev theory and applications	99
3.0. Introduction	99
3.1. L ² -boundedness of zero-order \u00c4do's	99
3.2. L^2 -boundedness for the case of $\delta > 0$	103
3.3. Weighted Sobolev spaces; K-parametrix and Green	
inverse	106
3.4. Existence of a Green inverse	113
3.5. H_{S} -compactness for ψ do's of negative order	117
Chapter 4. Pseudodifferential operators on manifolds with	
conical ends	118
4.0. Introduction	118
4.1. Distributions and temperate distributions on	
manifolds	119
4.2. Distributions on S-manifolds; manifolds with	
conical ends	123
4.3. Coordinate invariance of pseudodifferential	
operators	129
4.4. Pseudodifferential operators on S-manifolds	134
4.5. Order classes and Green inverses on S-manifolds	139
Chapter 5. Elliptic and parabolic problems	144
5.0. Introduction	144
5.1. Elliptic problems in free space; a summary	147
5.2. The elliptic boundary problem	149
5.3. Conversion to an R^{n} -problem of Riemann-Hilbert	
type	154
5.4. Boundary hypo-ellipticity; asymptotic expansion	
$\operatorname{mod} \partial_{\mathbf{v}}$	157
5.5. A system of ψ de's for the ψ_j of problem 3.4	162
5.6. Lopatinskij-Shapiro conditions; normal solvabi-	
lity of (2.2).	169
5.7. Hypo-ellipticity, and the classical parabolic	
problem	174
5.8. Spectral and semi-group theory for ψdo's	179
5.9. Self-adjointness for boundary problems	186
5.10. C^* -algebras of ψ do's; comparison algebras	189
Chapter 6. Hyperbolic first order systems	196
6.0. Introduction	196
6.1. First order symmetric hyperbolic systems of PDE	196
6.2. First order symmetric hyperbolic systems of	
ψ de's on $ extbf{R}^{ extbf{n}}$.	200
6.3. The evolution operator and its properties	206

Contents ix

6.4. N-th order strictly hyperbolic systems and	
symmetrizers.	210
6.5. The particle flow of a single hyperbolic ψ de	215
6.6. The action of the particle flow on symbols	219
6.7. Propagation of maximal ideals and propagation	
of singularities	223
Chapter 7. Hyperbolic differential equations	226
7.0. Introduction	226
7.1. Algebra of hyperbolic polynomials	227
7.2. Hyperbolic polynomials and characteristic surfaces	230
7.3. The hyperbolic Cauchy problem for variable	
coefficients	235
7.4. The cone h for a strictly hyperbolic expression	
of type e ^a	238
7.5. Regions of dependence and influence; finite	
propagation speed	241
7.6. The local Cauchy problem; hyperbolic problems	
on manifolds	244
Chapter 8. Pseudodifferential operators as smooth	
operators of L(H)	247
8.0. Introduction	247
8.1. ψ do's as smooth operators of $L(H_0)$	248
8.2. The 4 DO -theorem	251
8.3. The other half of the 4DO-theorem	257
8.4. Smooth operators; the ψ^* -algebra property;	
ψdo-calculus	261
8.5. The operator classes $\P GS$ and $\P GL$, and their	
symbols	265
8.6 The Frechet algebras ψx_0 , and the Weinstein-	
Zelditch class	271
8.7 Polynomials in x and $ heta_{\mathbf{x}}$ with coefficients in $ ext{ t UGX}$	275
8.8 Characterization of \(\frac{1}{3} \) by the Lie algebra	279
Chapter 9. Particle flow and invariant algebra of a semi-	
strictly hyperbolic system; coordinate invariance	
of Ορψ χ _m .	282
9.0. Introduction	282
9.1. Flow invariance of ψI_0	283
9.2. Invariance of ψs_m under particle flows	286
9.3. Conjugation of Op ψ x with e^{iKt} , $K \in Op\psi c$	289
9.4. Coordinate and gauge invariance; extension to	
S-manifolds	293
9.5. Conjugation with e^{iKt} for a matrix-valued K=k(x,D)	296

x Contents

9.6. A technical discussion of commutator equations	301
9.7. Completion of the proof of theorem 5.4	305
Chapter 10. The invariant algebra of the Dirac equation	310
10.0. Introduction	310
10.1. A refinement of the concept of observable	314
10.2. The invariant algebra and the Foldy-Wouthuysen	
transform	319
10.3. The geometrical optics approach for the Dirac	
algebra P	324
10.4. Some identities for the Dirac matrices	329
10.5. The first correction z ₀ for standard observables	334
10.6. Proof of the Foldy-Wouthuysen theorem	343
10.7. Nonscalar symbols in diagonal coordinates of $h(x,\xi)$	350
10.8. The full symmetrized first correction symbol $\mathbf{z}_{\mathbf{S}}$	356
10.9. Some final remarks	367
References	
Index	380