CONTENTS

		Int	roduction	vi:
CHAPTER	I		bility or instability of a fixed point of a map a Banach space	
CHAPTER	II	Bif	urcation of fixed points in R	ć
		1.	Fixed points	ç
		2.	Points of period 2	12
		3.	The Poincaré map - orbital stability	17
CHAPTER	III	Нор	f bifurcation in \mathbb{R}^2	27
		1.	Standard Hopf-bifurcation	27
		2.	Non-standard Hopf-bifurcation	44
		3.	Rotation number of the diffeomorphism restricted to the invariant bifurcated closed curve and weak resonance	47
		4.	Hopf-bifurcation for fields in ${f R}^2$	7 ′
		5.	Bifurcation into a 2-dimensional invariant torus for a non-autonomous differential equation	78
		6.	Bifurcation into a 2-dimensional invariant torus for an autonomous differential equation	85
		7.	Exercise	99
		8.	Domain of attractivity and uniqueness of the invariant circle	100
CHAPTER	IV		narmonic bifurcations of fixed points in ${f R}^2$ -strong pnance	109
		1.	The general study	109
		2.	Subharmonic bifurcations for a non-autonomous differential equation	123
		3.	Subharmonic bifurcation for an autonomous differential equation	126
		4.	Relation with the paper of Arnold and comments	127

vi Contents

CHAPTER V	Invariant manifolds and applications	131
CHAPTER V		132
		145
		157
	4. Applications to differential equations	169
	4.1. The non-autonomous case	169
	4.2. The autonomous case	180
CHAPTER VI	Bifurcation of an invariant circle into an invariant 2-torus for a one parameter family of maps	201
	1. Introduction. Definitions	202
	2. Main theorem and comments	205
	3. Center manifold theorem	208
	 Proof of the main theorem. Step 1: Reduction to the dimension 2 	211
	5. Proof of the main theorem. Step 2: Persistence of invariant circles for $\mu\neq 0$	217
	Proof of the main theorem.Step 3: Bifurcation	222
	7. An example	226
BIBLIOGRAPHY		229
