Contents

Preface	vii
Notation and Terminology	хi
Introduction	1
CHAPTER I. Variational Problems for Linear Equations with	
B-Symmetric and B-Positive Operators	7
§1. Definitions and properties of operators symmetric and	
positive in a generalized sense	7
§2. Extensions of operators in the sense of Sobolev and	
Friedrichs	15
§3. The generalized space of Friedrichs	19
$\S 4$. The variational problem for equations with a B -symmetric	
and B-positive operator	22
§5. Dual variational principles for nonselfadjoint equations	31
Commentary to Chapter I	33
CHAPTER II. Classes of Functionals and Function Spaces	45
§6. The role of classes of functionals for the variational method	45
§7. On a class of functionals depending on linear operators	51
§8. On a quasiclassical solution of the inverse problem of the	
calculus of variations for linear differential equations	61
§9. The function spaces $S_a^{-l} \overset{\circ}{W}_{\rho}(\Omega)$	67
§10. Spaces of differentiable functions over $\tilde{S}_a^{-l}W_p(\Omega)$	80
Commentary to Chapter II	88
CHAPTER III. Construction and Investigation of Variational	
Principles for Linear Boundary Value Problems	91
§11. On various formulations of the inverse problem of the	
calculus of variations and some solutions of it	91

v

vi CONTENTS

§12. A variational method for solving parabolic problems	107
§13. The principle of a minimum of a quadratic functional for	
the wave equation	124
§14. A variational principle for hypoelliptic PDE with constant	
coefficients	133
§15. Symmetrization of some nonclassical PDE	139
§16. A variational principle constructed on the basis of a priori	
estimates in negative spaces	146
Commentary to Chapter III	162
CHAPTER IV. Variational Principles for Nonlinear Equations	168
§17. On the inverse problem of the calculus of variations for	
nonlinear equations	168
§18. A variational method of solving nonlinear equations with	
nonpotential operators	182
Commentary to Chapter IV	198
Appendix	203
Bibliography	215