Contents

Pretace		
1 B	asic Concepts	1
1.1	The Scope and Methods of Probability Theory	1
1.2	Experiments and Events	4
1.3	The Axioms of Probability	9
1.4	Elementary Consequences of the Axioms	12
1.5	Classical Probability Spaces	15
1.6	Selection without Replacement: The Case of Two	
	Types of Items	21
1.7	Proof of Theorem 1.8	26
1.8	Selection with Replacement from a Lot Containing Two	
	Types of Items	27
1.9	Further Models with Classical Probability Spaces	30
1.10	Finite and Denumerable Sample Spaces	33
1.11	Geometric Probabilities	35
1.12	Exercises	38
2 C	onditional Probability and Independence	43
2.1	The Definition of Conditional Probability	43
2.2	The Multiplication Rule for Intersections	46
2.3	The Total Probability Rule and Bayes' Theorem	47
2.4	The Independence of Two Events	51

vi Contents

2.5	Extensions of the Concept of Independence	54
2.6	A Return to the Relation of the Relative Frequency and	
	Probability	58
2.7	The Standard Normal Distribution Function	65
2.8	The Proof of the Chebyshev Inequality	68
2.9	The Proof of Theorem 2.10	69
2.10	The Poisson Approximation to the Binomial Probabilities	74
2.11	Exercises	76
3 R	andom Variables	80
3.1	The Concept of Random Variables	80
3.2	Properties of Distribution Functions	82
3.3	The Exponential Distribution As Life Distribution	86
3.4	Discrete Random Variables	88
3.5	Absolutely Continuous Distribution Functions	93
3.6	The Normal Distribution	96
3.7	Multivariate Distributions	99
3.8	Conditional Densities	106
3.9	Independence of Random Variables	109
3.10	Sums of Independent Random Variables	112
3.11	Methods for Determining Distribution Functions	116
3.12	Exercises	121
4 E	expectation and Variance	126
4.1	The Expected Value of Discrete Random Variable	126
4.2	The Expectation of Absolutely Continuous Random Variable	134
4.3	The Distribution and the Expectation of a Function of	
	Random Variable	138
4.4	The Variance and the Correlation Coefficient	143
4.5	The Chebyshev Inequality and the (Weak) Law of Large	
	Numbers	149
4.6	Exercises	152
5 L	imit Theorems	155
5.1	The Central Limit Theorem	155
5.2	Moment Generating Functions, and the Proof of the Central	155
J. Z	Limit Theorem	161
5.3	Asymptotic Extreme Value Distributions	164
5.4	Two Exact Models Via Limit Theorems	168
5.5	Sums of Indicator Variables	170
		175
5.6	Exercises	1/5

Contents	vii

6	Miscellaneous Topics	177
6.1	Waiting-Time Paradoxes	177
6.2	2 An Unexpected Situation Concerning Independent Random	
	Variables	182
6.3	3 Once More on Independence	184
6.4	The Mean and the Standard Deviation for Normal Samples	185
6.5	The Borel-Cantelli Lemma; the Strong Convergence of the	
	Relative Frequency	187
6.6	6 Fair Games	190
Inc	dex	197