CONTENTS

Chapter	1	SET THEORY Introduction. Sets, elements. Set operations. Finite and countable sets. Product sets. Classes of sets.	Page 1
Chapter	2	TECHNIQUES OF COUNTING Introduction. Fundamental principle of counting. Factorial notation. Permutations. Permutations with repetitions. Ordered samples. Binomial coefficients and theorem. Combinations. Ordered partitions. Tree diagrams.	16
Chapter	3	INTRODUCTION TO PROBABILITY Introduction. Sample space and events. Axioms of probability. Finite probability spaces. Finite equiprobable spaces. Infinite sample spaces.	38
Chapter	4	CONDITIONAL PROBABILITY AND INDEPENDENCE Conditional probability. Multiplication theorem for conditional probability. Finite stochastic processes and tree diagrams. Partitions and Bayes' theorem. Independence. Independent or repeated trials.	54
Chapter	5	RANDOM VARIABLES Introduction. Distribution and expectation of a finite random variable. Variance and standard deviation. Joint distribution. Independent random variables. Functions of a random variable. Discrete random variables in general. Continuous random variables. Cumulative distribution function. Tchebycheff's inequality. Law of large numbers.	74
Chapter	6	BINOMIAL, NORMAL AND POISSON DISTRIBUTIONS	105
Chapter	7	MARKOV CHAINS Introduction. Probability vectors, stochastic matrices. Regular stochastic matrices. Fixed points and regular stochastic matrices. Markov chains. Higher transition probabilities. Stationary distribution of regular Markov chains. Absorbing states.	126
INDEX			152