CONTENTS | Preface Introduction | | |--|--| | | | | 2 Arbitrary Space of Elementary Events 2.1 Axioms of Probability Theory. Probability Space 2.2 Properties of Probability 2.3 Conditional Probability. Independence of Events and Trials 2.4 Total Probability Formula. Bayes Formula | 14
14
20
21
24 | | 3 Random Variables and Distribution Functions 3.1 Definitions and Examples 3.2 Properties of Distribution Functions. Examples 3.3 Multidimensional Random Variables 3.4 Independence of Random Variables and Classes of Events 3.5 On Infinite Sequences of Random Variables 3.6 Integrals | 28
28
30
38
42
49 | | 4 Numerical Characteristics of Random Variables 4.1 Expectation 4.2 Conditional Distribution Functions and Conditional Expectations 4.3 Expectations of Functions of Independent Random Variables 4.4 Expectations of Random Variables Independent of the Future 4.5 Variance 4.6 Correlation Coefficient and Other Numerical Characteristics 4.7 Inequalities 4.8 Extension of the Notion of Conditional Expectation 4.9 Conditional Distributions | 56
56
60
64
65
69
71
73
76 | | 5 Sequences of Independent Trials with Two Outcomes 5.1 Laws of Large Numbers 5.2 The Local Limit Theorem 5.3 The Laplace-de Moivre Theorem and Its Extensions 5.4 The Poisson Theorem and Its Refinements 5.5 Inequalities for Large Deviations Probabilities in the Bernoulli Scheme | 91
91
93
97
99 | CONTENTS vi | 6 | On | Convergence of Random Variables and Distributions | 108 | |---|------|---|-----| | _ | 6.1 | Convergence of Random Variables | 108 | | | | Convergence of Distributions | 115 | | | | Conditions for Weak Convergence | 120 | | 7 | Cha | racteristic Functions | 125 | | • | | Definition and Properties of Characteristic Functions | 125 | | | | Inversion Formula | 130 | | | | Continuity (Convergence) Theorem | 132 | | | 7.4 | Another Approach to Proving Theorems on Convergence to a Known | | | | | Distribution | 134 | | | 7.5 | Applying Characteristic Functions in the Poisson Theorem | 136 | | | 7.6 | Characteristic Functions of Multivariate Distributions. Multivariate Normal | | | | | Distribution | 138 | | | 7.7 | Other Applications of Characteristic Functions. Properties of Gamma | | | | | Distributions | 141 | | | 7.8 | Generating Functions. Application to Branching Processes. Extinction | 146 | | | | | 151 | | 8 | | uences of Independent Random Variables. Limit Theorems | 151 | | | 8.1 | The Law of Large Numbers | 151 | | | 8.2 | The Central Limit Theorem for Identically Distributed Random Variables | 152 | | | 8.3 | The Law of Large Numbers for Arbitrary Independent Random Variables | 133 | | | 8.4 | The Central Limit Theorem for Sums of Arbitrary Independent Random | 159 | | | | Variables | 166 | | | | Another Approach to Proving Limit Theorems. Approximation Rates | 169 | | | | The Local Limit Theorem | 173 | | | | The Law of Large Numbers and Central Limit Theorem in the Multivariate Case | 173 | | | | Large Deviations Probabilities | 183 | | | 8.9 | Convergence to Other Stable Laws | | | 9 | | ements of Renewal Theory | 191 | | | | Renewal Process. Renewal Functions | 191 | | | 9.2 | The Key Renewal Theorem in the Lattice Case | 195 | | | 9.3 | Excess and Defect of a Random Walk. Their Limiting Distribution in the | 200 | | | | Lattice Case | 200 | | | 9.4 | Renewal Theorem and the Limiting Behaviour of Excess and Defect in the | 202 | | | | Non-Lattice Case | 203 | | | 9.5 | The Law of Large Numbers and Central Limit Theorem for Renewal Processes | 206 | | | 10 S | equences of Independent Random Variables. Properties of the Trajectory | | | | | $(0, S_1, S_2,)$ | 209 | | | | 0.1 Zero-One Laws. Upper and Lower Functions | 209 | | | | 0.2 Convergence of Series of Independent Random Variables | 213 | | | 1 | 0.3 The Strong Law of Large Numbers | 215 | | | 1 | 0.4 The Strong Law of Large Numbers for Arbitrary Independent Variables | 219 | | | 11 F | Factorization Identities | 221 | | | | 1.1 Factorization Identities and Their First Consequences | 221 | | | | 1.2 Factorization Identities. Properties of the Trajectory $(0, S_1, S_2,)$ | 226 | | | | 1.3 The Distribution of $S = \max(0, \zeta) = \max_{k \ge 0} S_k$ | 229 | | CONTENTS | vii | |----------|-----| | | | | | 11.4 | Queuing Systems | 231 | |----|--------------|--|-----| | | 11.5 | Factorization Identities for Distributions Related to the Exponential Function | 232 | | | 11.6 | Symmetric Continuously Distributed Random Variables | 234 | | | 11.7 | Pollaczek-Spitzer Identity | 235 | | | 11.8 | Explicit Formulae for Skip-Free Discrete Walks | 237 | | 12 | Sequ | ences of Dependent Trials. Markov Chains | 242 | | | $12.\bar{1}$ | Discrete Markov Chains. Definitions and Examples. Classification of States | 242 | | | 12.2 | Necessary and Sufficient Conditions for Recurrence of States. Types of | | | | | States in Irreducible Chain. Structure of a Periodic Chain | 247 | | | 12.3 | Theorems about Random Walks on Lattice | 250 | | | 12.4 | Ergodic Theorems | 255 | | | 12.5 | Behaviour of Transition Probabilities for Reducible Chains | 262 | | | 12.6 | Markov Chains with Arbitrary State Spaces. Ergodicity of Chains with a | | | | | Positive Atom | 264 | | | 12.7 | Ergodicity of Harris Markov Chains | 271 | | 13 | Info | rmation and Entropy | 284 | | | 13.1 | Definitions and Properties of Information and Entropy | 284 | | | 13.2 | The Entropy of a Finite Markov Chain. The Asymptotic Behaviour of the | | | | | Information Contained in a Long Message | 289 | | 14 | Mar | tingales | 293 | | 17 | 14.1 | Definitions, Simplest Properties and Examples | 293 | | | 14.2 | Martingale Property and Random Change of Time. Wald Identity | 297 | | | | Inequalities | 310 | | | | Convergence Theorems | 315 | | | | Boundedness of the Moments of Stochastic Sequences | 319 | | | | | 325 | | 15 | | onary Sequences
Basic Notions | 325 | | | | Ergodicity, Mixing and Weak Dependence | 329 | | | | The Ergodic Theorem | 332 | | | | • | | | 16 | | hastically Recursive Sequences | 336 | | | | Basic Notions | 336 | | | 16.2 | Ergodicity and Renovating Events. Boundedness Conditions | 337 | | | 16.3 | Ergodicity Conditions Related to Monotonicity | 343 | | | 16.4 | Ergodicity Conditions for Contracting in the Mean Lipschitz Transformations | 345 | | 17 | | tinuous Time Random Processes | 352 | | | | General Definitions | 352 | | | 17.2 | Criteria of Regularity of Processes | 356 | | 18 | Pro | cesses with Independent Increments | 362 | | .0 | | General Properties | 362 | | | 18.2 | Wiener Processes. Properties of Trajectories | 364 | | | | The Laws of Iterated Logarithm | 366 | | | | The Poisson Process | 370 | | | 18.5 | Distributional Characterization of the Class of Processes with Independent | | | | | Increments | 373 | viii CONTENTS | 19 Functional Limit Theorems | 377 | | |---|-----|--| | 19.1 Convergence to the Wiener Process | 377 | | | 19.2 The Law of the Iterated Logarithm | 385 | | | 19.3 Convergence to the Poisson Process | 388 | | | 20 Markov Processes | 392 | | | 20.1 Definitions and General Properties | 392 | | | 20.2 Markov Processes with Countable State Spaces. Examples | 395 | | | 20.3 Branching Processes | 403 | | | 20.4 Semi-Markov and Regenerative Processes | 405 | | | 20.5 Diffusion Processes | 412 | | | 21 Processes with Finite Second Moments. Gaussian Processes | 419 | | | 21.1 Processes with Finite Second Moments | 419 | | | 21.2 Gaussian Processes | 422 | | | 21.3 Prediction Problem | 423 | | | Appendices | 426 | | | A1 Extension of a Probability Measure | 426 | | | A2 Kolmogorov Theorem on Consistent Distributions | 431 | | | A3 Integration | 433 | | | A4 Theorems of Helly and Arcela-Ascoli | 454 | | | A5 Proof of the Berry–Esseen Theorem | 456 | | | A6 Renewal Theorems | 460 | | | Bibliography | | | | Index | | |