CONTENTS

Preface Introduction	
 2 Arbitrary Space of Elementary Events 2.1 Axioms of Probability Theory. Probability Space 2.2 Properties of Probability 2.3 Conditional Probability. Independence of Events and Trials 2.4 Total Probability Formula. Bayes Formula 	14 14 20 21 24
 3 Random Variables and Distribution Functions 3.1 Definitions and Examples 3.2 Properties of Distribution Functions. Examples 3.3 Multidimensional Random Variables 3.4 Independence of Random Variables and Classes of Events 3.5 On Infinite Sequences of Random Variables 3.6 Integrals 	28 28 30 38 42 49
 4 Numerical Characteristics of Random Variables 4.1 Expectation 4.2 Conditional Distribution Functions and Conditional Expectations 4.3 Expectations of Functions of Independent Random Variables 4.4 Expectations of Random Variables Independent of the Future 4.5 Variance 4.6 Correlation Coefficient and Other Numerical Characteristics 4.7 Inequalities 4.8 Extension of the Notion of Conditional Expectation 4.9 Conditional Distributions 	56 56 60 64 65 69 71 73 76
 5 Sequences of Independent Trials with Two Outcomes 5.1 Laws of Large Numbers 5.2 The Local Limit Theorem 5.3 The Laplace-de Moivre Theorem and Its Extensions 5.4 The Poisson Theorem and Its Refinements 5.5 Inequalities for Large Deviations Probabilities in the Bernoulli Scheme 	91 91 93 97 99

CONTENTS vi

6	On	Convergence of Random Variables and Distributions	108
_	6.1	Convergence of Random Variables	108
		Convergence of Distributions	115
		Conditions for Weak Convergence	120
7	Cha	racteristic Functions	125
•		Definition and Properties of Characteristic Functions	125
		Inversion Formula	130
		Continuity (Convergence) Theorem	132
	7.4	Another Approach to Proving Theorems on Convergence to a Known	
		Distribution	134
	7.5	Applying Characteristic Functions in the Poisson Theorem	136
	7.6	Characteristic Functions of Multivariate Distributions. Multivariate Normal	
		Distribution	138
	7.7	Other Applications of Characteristic Functions. Properties of Gamma	
		Distributions	141
	7.8	Generating Functions. Application to Branching Processes. Extinction	146
			151
8		uences of Independent Random Variables. Limit Theorems	151
	8.1	The Law of Large Numbers	151
	8.2	The Central Limit Theorem for Identically Distributed Random Variables	152
	8.3	The Law of Large Numbers for Arbitrary Independent Random Variables	133
	8.4	The Central Limit Theorem for Sums of Arbitrary Independent Random	159
		Variables	166
		Another Approach to Proving Limit Theorems. Approximation Rates	169
		The Local Limit Theorem	173
		The Law of Large Numbers and Central Limit Theorem in the Multivariate Case	173
		Large Deviations Probabilities	183
	8.9	Convergence to Other Stable Laws	
9		ements of Renewal Theory	191
		Renewal Process. Renewal Functions	191
	9.2	The Key Renewal Theorem in the Lattice Case	195
	9.3	Excess and Defect of a Random Walk. Their Limiting Distribution in the	200
		Lattice Case	200
	9.4	Renewal Theorem and the Limiting Behaviour of Excess and Defect in the	202
		Non-Lattice Case	203
	9.5	The Law of Large Numbers and Central Limit Theorem for Renewal Processes	206
	10 S	equences of Independent Random Variables. Properties of the Trajectory	
		$(0, S_1, S_2,)$	209
		0.1 Zero-One Laws. Upper and Lower Functions	209
		0.2 Convergence of Series of Independent Random Variables	213
	1	0.3 The Strong Law of Large Numbers	215
	1	0.4 The Strong Law of Large Numbers for Arbitrary Independent Variables	219
	11 F	Factorization Identities	221
		1.1 Factorization Identities and Their First Consequences	221
		1.2 Factorization Identities. Properties of the Trajectory $(0, S_1, S_2,)$	226
		1.3 The Distribution of $S = \max(0, \zeta) = \max_{k \ge 0} S_k$	229

CONTENTS	vii

	11.4	Queuing Systems	231
	11.5	Factorization Identities for Distributions Related to the Exponential Function	232
	11.6	Symmetric Continuously Distributed Random Variables	234
	11.7	Pollaczek-Spitzer Identity	235
	11.8	Explicit Formulae for Skip-Free Discrete Walks	237
12	Sequ	ences of Dependent Trials. Markov Chains	242
	$12.\bar{1}$	Discrete Markov Chains. Definitions and Examples. Classification of States	242
	12.2	Necessary and Sufficient Conditions for Recurrence of States. Types of	
		States in Irreducible Chain. Structure of a Periodic Chain	247
	12.3	Theorems about Random Walks on Lattice	250
	12.4	Ergodic Theorems	255
	12.5	Behaviour of Transition Probabilities for Reducible Chains	262
	12.6	Markov Chains with Arbitrary State Spaces. Ergodicity of Chains with a	
		Positive Atom	264
	12.7	Ergodicity of Harris Markov Chains	271
13	Info	rmation and Entropy	284
	13.1	Definitions and Properties of Information and Entropy	284
	13.2	The Entropy of a Finite Markov Chain. The Asymptotic Behaviour of the	
		Information Contained in a Long Message	289
14	Mar	tingales	293
17	14.1	Definitions, Simplest Properties and Examples	293
	14.2	Martingale Property and Random Change of Time. Wald Identity	297
		Inequalities	310
		Convergence Theorems	315
		Boundedness of the Moments of Stochastic Sequences	319
			325
15		onary Sequences Basic Notions	325
		Ergodicity, Mixing and Weak Dependence	329
		The Ergodic Theorem	332
		•	
16		hastically Recursive Sequences	336
		Basic Notions	336
	16.2	Ergodicity and Renovating Events. Boundedness Conditions	337
	16.3	Ergodicity Conditions Related to Monotonicity	343
	16.4	Ergodicity Conditions for Contracting in the Mean Lipschitz Transformations	345
17		tinuous Time Random Processes	352
		General Definitions	352
	17.2	Criteria of Regularity of Processes	356
18	Pro	cesses with Independent Increments	362
.0		General Properties	362
	18.2	Wiener Processes. Properties of Trajectories	364
		The Laws of Iterated Logarithm	366
		The Poisson Process	370
	18.5	Distributional Characterization of the Class of Processes with Independent	
		Increments	373

viii CONTENTS

19 Functional Limit Theorems	377	
19.1 Convergence to the Wiener Process	377	
19.2 The Law of the Iterated Logarithm	385	
19.3 Convergence to the Poisson Process	388	
20 Markov Processes	392	
20.1 Definitions and General Properties	392	
20.2 Markov Processes with Countable State Spaces. Examples	395	
20.3 Branching Processes	403	
20.4 Semi-Markov and Regenerative Processes	405	
20.5 Diffusion Processes	412	
21 Processes with Finite Second Moments. Gaussian Processes	419	
21.1 Processes with Finite Second Moments	419	
21.2 Gaussian Processes	422	
21.3 Prediction Problem	423	
Appendices	426	
A1 Extension of a Probability Measure	426	
A2 Kolmogorov Theorem on Consistent Distributions	431	
A3 Integration	433	
A4 Theorems of Helly and Arcela-Ascoli	454	
A5 Proof of the Berry–Esseen Theorem	456	
A6 Renewal Theorems	460	
Bibliography		
Index		