Contents

Preface ix List of notation xiii

PART A: THE CLASSICAL PROBLEM

1	Van der Corput's conjecture	3
1.1	Roth's formulation of the problem	4
1.2	Application to approximate evaluation of certain functions	7
1.3	A question of Erdös	10
2	Lower bounds - Roth's method	14
2.1	Roth's orthogonal function method	14
2.2	Halász's variation of Roth's method	20
2.3	Application to approximate evaluation of certain functions	28
2.4	An application of Halász's method	32
3	Upper bounds	39
3.1	Davenport's theorem and Roth's variation	39
3.2	Halton's theorem. Faure's theorem	48
3.3	Roth's probabilistic method	55
3.4	An inductive argument using Roth's probabilistic method	59
3.5	A variation of Roth's probabilistic method	73
4	Lower bounds - a combinatorial method of Schmidt	79
	The key inequality	79
4.2	The problem of van Aardenne-Ehrenfest and a question of Erdös	80
4.3	The scarcity of intervals with bounded error	87
4.4	A variation of the method and application to a problem of Erdös in	00
	diophantine approximation	92
PA	ART B: GENERALIZATION OF THE CLASSICAL PROBL	EM
5	Schmidt's work	105
_	An illustration of the method of integral equations	108
	Balls in the unit torus	114
	Solving the integral equations	121
	A Fourier transform approach	127
	Demonstration of the method on two examples	132
6.2	Balls contained in the unit cube – a 'truncation' technique	140
	Similar convex sets	153

viii Contents

7	Further applications of the Fourier transform method	173
	Homothetic convex sets	182
	Congruent sets	209
	Roth's conjecture on disc-segments	218
	Spherical caps and a geometric application	225
	More upper bounds	229
	A probabilistic method	229
	A hypergraph 2-colouring approach	240
8.3	Applications of the combinatorial lemmas	251
	PART C: MORE PROBLEMS!	•
0	Miscellaneous questions	277
		277
9.1	Arithmetic progressions Unsolved problems on point distributions	283
9.2		286
	References	
	Index of theorems and corollaries	289
	Index of names	291
	Index	292