Contents

Preface		page xiii
1	Introduction: Donsker's Theorem, Metric Entropy,	
	and Inequalities	1
1.1	Empirical processes: the classical case	2
1.2	Metric entropy and capacity	10
1.3	Inequalities	12
	Problems	18
	Notes	19
	References	21
2	Gaussian Measures and Processes; Sample Continuity	23
2.1	Some definitions	23
2.2	Gaussian vectors are probably not very large	24
2.3	Inequalities and comparisons for Gaussian distributions	31
2.4	Gaussian measures and convexity	40
2.5	The isonormal process: sample boundedness and continuity	43
2.6	A metric entropy sufficient condition for sample continuity	52
2.7	Majorizing measures	59
2.8	Sample continuity and compactness	74
**2.9	Volumes, mixed volumes, and ellipsoids	78
**2.10	Convex hulls of sequences	82
	Problems	83
	Notes	86
	References	88
3	Foundations of Uniform Central Limit Theorems:	
	Donsker Classes	91
3.1	Definitions: convergence in law	91
3.2	Measurable cover functions	95

X Contents

3.3	Almost uniform convergence amd convergence in	
	outer probability	100
3.4	Perfect functions	103
3.5	Almost surely convergent realizations	106
3.6		111
3.7	Asymptotic equicontinuity and Donsker classes	117
3.8	Unions of Donsker classes	121
3.9	Sequences of sets and functions	122
	Problems	127
	Notes	130
	References	132
4	Vapnik-Červonenkis Combinatorics	134
4.1	Vapnik-Červonenkis classes	134
4.2	Generating Vapnik-Červonenkis classes	138
*4.3	Maximal classes	142
*4.4	Classes of index 1	145
*4.5	Combining VC classes	152
4.6	Probability laws and independence	156
4.7	Vapnik-Červonenkis properties of classes of functions	159
4.8	Classes of functions and dual density	161
**4.9	Further facts about VC classes	165
	Problems	166
	Notes	167
	References	168
5	Measurability	170
*5.1	Sufficiency	171
5.2	Admissibility	179
5.3	Suslin properties, selection, and a counterexample	185
	Problems	191
	Notes	193
_	References	194
6	Limit Theorems for Vapnik-Červonenkis and Related Classes	196
6.1	Koltchinskii-Pollard entropy and Glivenko-Cantelli theorems	196
6.2	Vapnik-Červonenkis-Steele laws of large numbers	203
6.3	Pollard's central limit theorem	208
6.4	Necessary conditions for limit theorems	215
**6.5 **6.6	Inequalities for empirical processes	220
**6.6 **6.7	Glivenko-Cantelli properties and random entropy	223
	Classification problems and learning theory	226
	Problems	227

хi

		Notes	223
		References	230
,	7	Metric Entropy, with Inclusion and Bracketing	23
,	7.1	Definitions and the Blum-DeHardt law of large numbers	234
•	7.2	Central limit theorems with bracketing	23
,	7.3	The power set of a countable set: the Borisov-Durst theorem	244
**′	7.4	Bracketing and majorizing measures	240
		Problems	24
		Notes	248
		References	248
1	8	Approximation of Functions and Sets	250
1	8.1	Introduction: the Hausdorff metric	250
:	8.2	Spaces of differentiable functions and sets with differentiable	
		boundaries	252
:	8.3	Lower layers	264
:	8.4	Metric entropy of classes of convex sets	269
		Problems	28
		Notes	282
		References	283
9	9	Sums in General Banach Spaces and Invariance Principles	285
9	9.1	Independent random elements and partial sums	286
9	9.2	A CLT implies measurability in separable normed spaces	29
9	9.3	A finite-dimensional invariance principle	293
9	9.4	Invariance principles for empirical processes	30
**(9.5	Log log laws and speeds of convergence	300
		Problems	309
		Notes	310
		References	31
1	0	Universal and Uniform Central Limit Theorems	314
]	0.1	Universal Donsker classes	314
1	0.2	Metric entropy of convex hulls in Hilbert space	322
**1	0.3	Uniform Donsker classes	32
		Problems	330
		Notes	330
		References	33
]	l 1	The Two-Sample Case, the Bootstrap, and Confidence Sets	33
]	1.1	The two-sample case	33
		A bootstrap central limit theorem in probability	33.
		Other aspects of the hootstrap	35

xii Contents

**11.4	Further Giné-Zinn bootstrap central limit theorems	358
	Problems	359
	Notes	360
	References	361
12	Classes of Sets or Functions Too Large for Central	
	Limit Theorems	363
12.1	Universal lower bounds	363
12.2	An upper bound	365
12.3	Poissonization and random sets	367
12.4	Lower bounds in borderline cases	373
12.5	Proof of Theorem 12.4.1	384
	Problems	388
	Notes	388
	References	389
Appendi	x A Differentiating under an Integral Sign	391
Appendi	x B Multinomial Distributions	399
Appendi.	x C Measures on Nonseparable Metric Spaces	402
Appendi.	x D An Extension of Lusin's Theorem	405
Appendi.	x E Bochner and Pettis Integrals	407
Appendi.	x F Nonexistence of Types of Linear Forms on Some Spaces	413
Appendi.		417
Appendi.		421
Appendi.	x I Modifications and Versions of Isonormal Processes	425
Subject I	'ndex	427
Author I	ndex	432
Index of Notation		125